LM117HV, LM317HV
www.ti.com
SNVS773C APRIL 2000REVISED APRIL 2013
LM117HV/LM317HV 3-Terminal Adjustable Regulator
Check for Samples: LM117HV,LM317HV
Normally, no capacitors are needed unless the device
1FEATURES is situated more than 6 inches from the input filter
2 Adjustable Output Down to 1.2V capacitors in which case an input bypass is needed.
Specified 1.5A Output Current An optional output capacitor can be added to improve
transient response. The adjustment terminal can be
Line Regulation Typically 0.01%/V bypassed to achieve very high ripple rejections ratios
Load Regulation Typically 0.1% which are difficult to achieve with standard 3-terminal
Current Limit Constant with Temperature regulators.
100% Electrical Burn-in Besides replacing fixed regulators, the LM117HV is
Eliminates the Need to Stock Many Voltages useful in a wide variety of other applications. Since
the regulator is “floating” and sees only the input-to-
Standard 3-lead Transistor Package output differential voltage, supplies of several
80 dB Ripple Rejection hundred volts can be regulated as long as the
Output is Short-circuit Protected maximum input to output differential is not exceeded,
i.e. do not short the output to ground.
P+Product Enhancement Tested Also, it makes an especially simple adjustable
DESCRIPTION switching regulator, a programmable output regulator,
The LM117HV/LM317HV are adjustable 3-terminal or by connecting a fixed resistor between the
positive voltage regulators capable of supplying in adjustment and output, the LM117HV can be used as
excess of 1.5A over a 1.2V to 57V output range. a precision current regulator. Supplies with electronic
They are exceptionally easy to use and require only shutdown can be achieved by clamping the
two external resistors to set the output voltage. adjustment terminal to ground which programs the
Further, both line and load regulation are better than output to 1.2V where most loads draw little current.
standard fixed regulators. Also, the LM117HV is The LM117HVK STEEL and LM317HVK STEEL are
packaged in standard transistor packages which are packaged in standard TO-3 transistor packages,
easily mounted and handled. while the LM117HVH and LM317HVH are packaged
In addition to higher performance than fixed in a solid Kovar base TO transistor package. The
regulators, the LM117HV series offers full overload LM317HVT uses a TO-220 plastic package. The
protection available only in IC's. Included on the chip LM117HV is rated for operation from 55°C to
are current limit, thermal overload protection and safe +150°C, and the LM317HV from 0°C to +125°C.
area protection. All overload protection circuitry
remains fully functional even if the adjustment
terminal is disconnected.
Connection Diagrams
Figure 1. (TO-3) Figure 2. (TO)
Metal Can Package Metal Can Package
Case is Output Case is Output
Bottom View Bottom View
See Package Number NDS0002A See Package Number NDT0003A
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Copyright © 2000–2013, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
LM117HV, LM317HV
SNVS773C APRIL 2000REVISED APRIL 2013
www.ti.com
Figure 3. (TO-220)
Plastic Package
Front View
See Package Number NDE0003B
Typical Applications
Full output current not available at high input-output voltages
†Optional—improves transient response. Output capacitors in the range of 1 μF to 1000 μF of aluminum or tantalum
electrolytic
are commonly used to provide improved output impedance and rejection of transients.
*Needed if device is more than 6 inches from filter capacitors.
Figure 4. 1.2V-45V Adjustable Regulator
*Min. output 1.2V
Figure 6. 5V Logic Regulator with
Electronic Shutdown*
*Sets maximum VOUT
Figure 5. Digitally Selected Outputs
2Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
www.ti.com
SNVS773C APRIL 2000REVISED APRIL 2013
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
ABSOLUTE MAXIMUM RATINGS(1)(2)
Power Dissipation Internally limited
Input—Output Voltage Differential +60V, 0.3V
LM117HV 55°C to +150°C
Operating Junction Temperature Range LM317HV 0°C to +125°C
Storage Temperature 65°C to +150°C
Lead Temperature (Soldering, 10 sec.) 300°C
ESD Tolerance(3) 2000V
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for
which the device is functional, but do not ensure specific performance limits.
(2) Refer to RETS117HVH for LM117HVH or RETS117HVK for LM117HVK military specifications.
(3) Human body model, 1.5 kΩin series with 100 pF.
ELECTRICAL CHARACTERISTICS(1)
Parameter Conditions LM117HV LM317HV Units
Min Typ Max Min Typ Max
Line Regulation TJ= 25°C, 3V VIN VOUT 60V 0.01 0.02 0.01 0.04 %/V
IL= 10 mA(2)
Load Regulation TJ= 25°C, 10 mA IOUT IMAX 0.1 0.3 0.1 0.5 %
Thermal Regulation TJ= 25°C, 20 ms Pulse 0.03 0.07 0.04 0.07 %/W
Adjustment Pin Current 50 100 50 100 μA
Adjustment Pin Current Change 10 mA ILIMAX 0.2 5 0.2 5 μA
3.0 V (VIN VOUT)60V
Reference Voltage 3.0 V (VIN VOUT)60V(3) 1.20 1.25 1.30 1.20 1.25 1.30 V
10 mA IOUT IMAX, P PMAX
Line Regulation 3.0V (VIN VOUT)60V, 0.02 0.05 0.02 0.07 %/V
IL= 10 mA, (2)
Load Regulation 10 mA IOUT IMAX(2) 0.3 1 0.3 1.5 %
Temperature Stability TMIN TJTMAX 1 1 %
Minimum Load Current (VIN VOUT) = 60V 3.5 7 3.5 12 mA
Current Limit (VIN VOUT)15V
K, NDE Packages 1.5 2.2 3.5 1.5 2.2 3.7 A
NDT Package 0.5 0.8 1.8 0.5 0.8 1.9 A
(VIN VOUT)60V
K, NDE Packages 0.3 0.3 A
NDT Package 0.03 0.03 A
RMS Output Noise, % of VOUT TJ= 25°C, 10 Hz f10 kHz 0.003 0.003 %
Ripple Rejection Ratio VOUT = 10V, f = 120 Hz 65 65 dB
CADJ = 10 μF 66 80 66 80 dB
Long-Term Stability TJ= 125°C 0.3 1 0.3 1 %
(1) Unless otherwise specified, these specifications apply: 55°C TJ+150°C for the LM117HV, and 0°C TJ+125°C for the
LM317HV; VIN VOUT = 5V and IOUT = 0.1A for the TO package and IOUT = 0.5A for the TO-3 and TO-220 packages. Although power
dissipation is internally limited, these specifications are applicable for power dissipations of 2W for the TO and 20W for the TO-3 and
TO-220. IMAX is 1.5A for the TO-3 and TO-220 and 0.5A for the TO package.
(2) Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account
separately. Pulse testing with low duty cycle is used.
(3) Refer to RETS117HVH for LM117HVH or RETS117HVK for LM117HVK military specifications.
Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
SNVS773C APRIL 2000REVISED APRIL 2013
www.ti.com
ELECTRICAL CHARACTERISTICS(1) (continued)
Parameter Conditions LM117HV LM317HV Units
Min Typ Max Min Typ Max
Thermal Resistance, Junction to NDT Package 12 15 12 15 °C/W
Case NDE Package 4 5 °C/W
NDS Package 2.3 3 2.3 3 °C/W
Thermal Resistance, Junction to NDT Package 140 140 °C/W
Ambient (no heat sink) NDE Package 50 °C/W
NDS Package 35 35 °C/W
4Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
www.ti.com
SNVS773C APRIL 2000REVISED APRIL 2013
TYPICAL PERFORMANCE CHARACTERISTICS
Output capacitor = 0 μF unless otherwise noted.
Load Regulation Current Limit
Figure 7. Figure 8.
Adjustment Current Dropout Voltage
Figure 9. Figure 10.
Temperature Stability Minimum Operating Current
Figure 11. Figure 12.
Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
SNVS773C APRIL 2000REVISED APRIL 2013
www.ti.com
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
Output capacitor = 0 μF unless otherwise noted.
Ripple Rejection Ripple Rejection
Figure 13. Figure 14.
Ripple Rejection Output Impedance
Figure 15. Figure 16.
Line Transient Response Load Transient Response
Figure 17. Figure 18.
6Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
www.ti.com
SNVS773C APRIL 2000REVISED APRIL 2013
APPLICATION HINTS
In operation, the LM117HV develops a nominal 1.25V reference voltage, VREF, between the output and
adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is
constant, a constant current I1then flows through the output set resistor R2, giving an output voltage of
Since the 100 μA current from the adjustment terminal represents an error term, the LM117HV was designed to
minimize IADJ and make it very constant with line and load changes. To do this, all quiescent operating current is
returned to the output establishing a minimum load current requirement. If there is insufficient load on the output,
the output will rise.
EXTERNAL CAPACITORS
An input bypass capacitor is recommended. A 0.1 μF disc or 1 μF solid tantalum on the input is suitable input
bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when
adjustment or output capacitors are used but the above values will eliminate the possiblity of problems.
The adjustment terminal can be bypassed to ground on the LM117HV to improve ripple rejection. This bypass
capacitor prevents ripple from being amplified as the output voltage is increased. With a 10 μF bypass capacitor
80 dB ripple rejection is obtainable at any output level. Increases over 10 μF do not appreciably improve the
ripple rejection at frequencies above 120 Hz. If the bypass capacitor is used, it is sometimes necessary to
include protection diodes to prevent the capacitor from discharging through internal low current paths and
damaging the device.
In general, the best type of capacitors to use are solid tantalum. Solid tantalum capacitors have low impedance
even at high frequencies. Depending upon capacitor construction, it takes about 25 μF in aluminum electrolytic to
equal 1 μF solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies; but some
types have a large decrease in capacitance at frequencies around 0.5 MHz. For this reason, 0.01 μF disc may
seem to work better than a 0.1 μF disc as a bypass.
Although the LM117HV is stable with no output capacitors, like any feedback circuit, certain values of external
capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF. A 1 μF solid
tantalum (or 25 μF aluminum electrolytic) on the output swamps this effect and insures stability. Any increase of
load capacitance larger than 10 μF will merely improve the loop stability and output impedance.
Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
SNVS773C APRIL 2000REVISED APRIL 2013
www.ti.com
LOAD REGULATION
The LM117HV is capable of providing extremely good load regulation but a few precautions are needed to obtain
maximum performance. The current set resistor connected between the adjustment terminal and the output
terminal (usually 240Ω) should be tied directly to the output of the regulator rather than near the load. This
eliminates line drops from appearing effectively in series with the reference and degrading regulation. For
example, a 15V regulator with 0.05Ωresistance between the regulator and load will have a load regulation due to
line resistance of 0.05Ω× IL. If the set resistor is connected near the load the effective line resistance will be
0.05Ω(1 + R2/R1) or in this case, 11.5 times worse.
Figure 19 shows the effect of resistance between the regulator and 240Ωset resistor.
Figure 19. Regulator with Line Resistance in Output Lead
With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using two
separate leads to the case. However, with the TO-5 package, care should be taken to minimize the wire length of
the output lead. The ground of R2 can be returned near the ground of the load to provide remote ground sensing
and improve load regulation.
PROTECTION DIODES
When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to
prevent the capacitors from discharging through low current points into the regulator. Most 10 μF capacitors have
low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is
enough energy to damage parts of the IC.
When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge
into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage
of the regulator, and the rate of decrease of VIN. In the LM117HV, this discharge path is through a large junction
that is able to sustain 15A surge with no problem. This is not true of other types of positive regulators. For output
capacitors of 25 μF or less, there is no need to use diodes.
The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs
when either the input or output is shorted. Internal to the LM117HV is a 50Ωresistor which limits the peak
discharge current. No protection is needed for output voltages of 25V or less and 10 μF capacitance. Figure 20
shows an LM117HV with protection diodes included for use with outputs greater than 25V and high values of
output capacitance.
8Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
www.ti.com
SNVS773C APRIL 2000REVISED APRIL 2013
CURRENT LIMIT
Internal current limit will be activated whenever the output current exceeds the limit indicated in the Typical
Performance Characteristics. However, if during a short circuit condition the regulator's differential voltage
exceeds the Absolute Maximum Rating of 60V (e.g. VIN 60V, VOUT = 0V), internal junctions in the regulator may
break down and the device may be damaged or fail. Failure modes range from an apparent open or short from
input to output of the regulator, to a destroyed package (most common with the TO-220 package). To protect the
regulator, the user is advised to be aware of voltages that may be applied to the regulator during fault conditions,
and to avoid violating the Absolute Maximum Ratings.
Figure 20. Regulator with Protection Diodes
D1 protects against C1
D2 protects against C2
Schematic Diagram
Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
SNVS773C APRIL 2000REVISED APRIL 2013
www.ti.com
Typical Applications
Figure 21. Slow Turn-On 15V Regulator
†Solid tantalum
*Discharges C1 if output is shorted to ground
Figure 22. Adjustable Regulator with Improved Ripple Rejection
Figure 23. High Stability 10V Regulator
10 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
www.ti.com
SNVS773C APRIL 2000REVISED APRIL 2013
†Solid tantalum
*Minimum load current = 30 mA
‡Optional—improves ripple rejection
Figure 24. High Current Adjustable Regulator
Full output current not available at high input-output voltages
Figure 25. 0 to 30V Regulator
Figure 26. Power Follower
Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
SNVS773C APRIL 2000REVISED APRIL 2013
www.ti.com
†Solid tantalum
*Lights in constant current mode
Figure 27. 5A Constant Voltage/Constant Current Regulator
Figure 28. 1A Current Regulator
*Minimum load current 4 mA
Figure 29. 1.2V–20V Regulator with Minimum Program Current
12 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
www.ti.com
SNVS773C APRIL 2000REVISED APRIL 2013
Figure 30. High Gain Amplifier
†Solid tantalum
*Core—Arnold A-254168-2 60 turns
Figure 31. Low Cost 3A Switching Regulator
Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
SNVS773C APRIL 2000REVISED APRIL 2013
www.ti.com
†Solid tantalum
*Core—Arnold A-254168-2 60 turns
Figure 32. 4A Switching Regulator with Overload Protection
* 0.8Ω R1 120Ω
Figure 33. Precision Current Limiter
Figure 34. Tracking Preregulator
14 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
www.ti.com
SNVS773C APRIL 2000REVISED APRIL 2013
*All outputs within ±100 mV
†Minimum load—10 mA
Figure 35. Adjustable Multiple On-Card Regulators with Single Control*
Figure 36. AC Voltage Regulator
Use of RSallows low charging rates with fully charged battery.
**The 1000 μF is recommended to filter out input transients
Figure 37. 12V Battery Charger
Figure 38. 50 mA Constant Current Battery Charger
Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
SNVS773C APRIL 2000REVISED APRIL 2013
www.ti.com
Figure 39. Adjustable 4A Regulator
*Sets peak current (0.6A for 1Ω)
**The 1000 μF is recommended to filter out input transients
Figure 40. Current Limited 6V Charger
16 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM117HV LM317HV
LM117HV, LM317HV
www.ti.com
SNVS773C APRIL 2000REVISED APRIL 2013
REVISION HISTORY
Changes from Revision B (April 2013) to Revision C Page
Changed layout of National Data Sheet to TI format .......................................................................................................... 16
Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 17
Product Folder Links: LM117HV LM317HV
PACKAGE OPTION ADDENDUM
www.ti.com 13-Sep-2013
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LM117HVH ACTIVE TO NDT 3 500 Green (RoHS
& no Sb/Br) AU Level-1-NA-UNLIM -55 to 125 LM117HVHP+
LM117HVH/NOPB ACTIVE TO NDT 3 500 Green (RoHS
& no Sb/Br) AU Level-1-NA-UNLIM -55 to 125 LM117HVHP+
LM317HVH ACTIVE TO NDT 3 500 Green (RoHS
& no Sb/Br) AU Level-1-NA-UNLIM 0 to 125 LM317HVHP+
LM317HVH/NOPB ACTIVE TO NDT 3 500 Green (RoHS
& no Sb/Br) AU Level-1-NA-UNLIM 0 to 125 LM317HVHP+
LM317HVK STEEL ACTIVE TO-3 NDS 2 50 TBD Call TI Call TI 0 to 125 LM317HVK
STEELP+
LM317HVK STEEL/NOPB ACTIVE TO-3 NDS 2 50 Green (RoHS
& no Sb/Br) POST-PLATE Level-1-NA-UNLIM 0 to 125 LM317HVK
STEELP+
LM317HVT/NOPB ACTIVE TO-220 NDE 3 45 Green (RoHS
& no Sb/Br) CU SN Level-1-NA-UNLIM 0 to 125 LM317
HVT P+
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
PACKAGE OPTION ADDENDUM
www.ti.com 13-Sep-2013
Addendum-Page 2
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
MECHANICAL DATA
NDT0003A
www.ti.com
H03A (Rev D)
MECHANICAL DATA
NDS0002A
www.ti.com
MECHANICAL DATA
NDE0003B
www.ti.com
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated