LESHAN RADIO COMPANY, LTD. General Purpose Transistors NPN Silicon BCW60ALT1 BCW60BLT1 BCW60DLT1 3 COLLECTOR 1 BASE 2 EMITTER 3 MAXIMUM RATINGS Rating Symbol Value Unit 1 Collector-Emitter Voltage V CEO 32 Vdc Collector-Base Voltage V CBO 32 Vdc CASE 318-08, STYLE 6 Emitter-Base Voltage V 5.0 Vdc SOT-23 (TO-236AB) EBO 100 mAdc Collector Current -- Continuous IC 2 THERMAL CHARACTERISTICS Characteristic Total Device Dissipation FR- 5 Board, (1) TA = 25C Derate above 25C Thermal Resistance, Junction to Ambient Total Device Dissipation Alumina Substrate, (2) TA = 25C Derate above 25C Thermal Resistance, Junction to Ambient Junction and Storage Temperature Symbol Max Unit PD 225 mW 1.8 mW/C RJA 556 C/W PD 300 mW 2.4 mW/C 417 -55 to +150 C/W C RJA TJ , Tstg DEVICE MARKING BCW60ALT1 = AA, BCW60BLT1 = AB, BCW60DLT1 = AD ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted.) Characteristic Symbol Min Max Unit V (BR)CEO 32 -- Vdc V (BR)EBO 5.0 -- Vdc (VCE = 32 Vdc, ) -- 20 nAdc (VCE = 32 Vdc, TA = 150C) -- 20 Adc -- 20 nAdc OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage (IC = 2.0mAdc, IE = 0 ) Emitter-Base Breakdown Voltage (I E= 1.0 Adc, I C = 0) Collector Cutoff Current I CES Emitter Cutoff Current (I EB= 4.0 Vdc, I C = 0) I EBO 1. FR- 5 = 1.0 x 0.75 x 0.062 in. 2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina. M9-1/6 LESHAN RADIO COMPANY, LTD. BCW60ALT1 BCW60BLT1 BCW60DLT1 ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) (Continued) Characteristic Symbol Min Max Unit 20 30 100 -- -- -- 120 175 380 220 310 630 60 70 100 -- -- -- 125 175 350 250 350 700 -- -- 0.55 0.35 0.7 0.6 1.05 0.85 0.6 0.75 fT 125 -- MHz C obo -- 4.5 pF NF -- 6.0 dB t on -- 150 ns t off -- 800 ns ON CHARACTERISTICS DC Current Gain ( IC= 10 Adc, VCE = 5.0 Vdc ) hFE -- BCW60A BCW60B BCW60D ( IC= 2.0 mAdc, VCE = 5.0 Vdc ) hFE -- BCW60A BCW60B BCW60D ( IC= 50 mAdc, VCE = 1.0 Vdc ) hFE -- BCW60A BCW60B BCW60D AC Current Gain ( VCE = 5.0Vdc, IC= 2.0 mAdc, f= 1.0 kHz ) hFE BCW60A BCW60B BCW60D Collector-Emitter Saturation Voltage ( IC = 50 mAdc, IB = 1.25 mAdc ) ( IC = 10 mAdc, IB = 0.25 mAdc ) Base-Emitter Saturation Voltage ( IC = 50 mAdc, IB = 1.25 mAdc ) ( IC = 50 mAdc, IB = 0.25 mAdc ) Base-Emitter On Voltage ( IC = 2.0 mAdc, VCE = 5.0 Vdc ) -- V CE(sat) V Vdc Vdc BE(sat) V BE(on) Vdc SMSMALL-SIGNAL CHARACTERISTICS Current-Gain -- Bandwidth Product (I C = 10 mAdc, V CE = 5.0 Vdc, f = 100 MHz) Output Capacitance (V CE = 10 Vdc, I C = 0, f = 1.0 MHz) Noise Figure (V CE = 5.0 Vdc, I C = 0.2 mAdc, R S = 2.0 k, f = 1.0 kHz, BW = 200 Hz) SWITCHING CHARACTERISTICS Turn-On Time (I C = 10 mAdc, I B1 = 1.0 mAdc) Turn-Off Time (I B2 = 1.0 mAdc, V BB = 3.6 Vdc, R 1 = R 2 = 5.0 k, R L = 990 ) EQUIVALENT SWITCHING TIME TEST CIRCUITS +3.0 V 300 ns DUTY CYCLE = 2% 275 +10.9 V 10 < t 1 < 500 s DUTY CYCLE = 2% +3.0 V t 1 275 +10.9 V 10 k 10 k 0 - 0.5 V - 9.1 V <1.0 ns C S < 4.0 pF* 1N916 C S < 4.0 pF* <1.0 ns *Total shunt capacitance of test jig and connectors Figure 1. Turn-On Time Figure 2. Turn-Off Time M9-2/6 LESHAN RADIO COMPANY, LTD. BCW60ALT1 BCW60BLT1 BCW60DLT1 TYPICAL NOISE CHARACTERISTICS (V CE = 5.0 Vdc, T A = 25C) 20 100 50 20 30A 10 7.0 100A 5.0 10 A 3.0 30A 2.0 10 20 50 BANDWIDTH = 1.0 Hz ~ RS ~ IC=1.0mA 8 BANDWIDTH = 1.0 Hz ~0 RS~ I n , NOISE CURRENT (pA) e n , NOISE VOLTAGE (nV) IC= 1.0mA 100 200 500 1.0k 2.0k 5.0k 300A 10 100A 5.0 2.0 1.0 0.5 30A 10A 0.2 0.1 10 10 k 20 50 100 200 500 1.0k 2.0k f, FREQUENCY (Hz) f, FREQUENCY (Hz) Figure 3. Noise Voltage Figure 4. Noise Current 5.0k 10 k NOISE FIGURE CONTOURS (V CE = 5.0 Vdc, T A = 25C) 500k 1.0M 500k BANDWIDTH = 1.0 Hz 100k 50k 20k 10k 5.0k 2.0 dB 2.0k 1.0k 3.0 dB 4.0dB 6.0 dB 500 10 dB 200 100 50 10 20 30 50 70 100 200 300 500 700 1.0K R S , SOURCE RESISTANCE ( ) R S , SOURCE RESISTANCE ( ) 200k BANDWIDTH = 1.0 Hz 200k 100k 50k 20k 10k 1.0 dB 5.0k 2.0k 2.0 dB 1.0k 3.0dB 500 5.0 dB 200 8.0 dB 100 10 20 30 50 70 100 200 300 500 700 1.0K I C , COLLECTOR CURRENT (A) I C , COLLECTOR CURRENT (A) Figure 5. Narrow Band, 100 Hz Figure 6. Narrow Band, 1.0 kHz R S , SOURCE RESISTANCE ( ) 500k 10 Hz to 15.7Hz 200k 100k 50k Noise Figure is Defined as: 20k 10k 5.0k NF = 20 log 10 1.0 dB 2.0k 1.0k 2.0 dB 3.0 dB 500 5.0 dB 200 100 8.0 dB e n 2 +4KTRS +I n2 R S2 ( ---------------) 4KTR 1/ 2 S e n = Noise Voltage of the Transistor referred to the input. (Figure 3) I n = Noise Current of the Transistor referred to the input. (Figure 4) K = Boltzman's Constant (1.38 x 10 -23 j/K) T = Temperature of the Source Resistance (K) R s = Source Resistance ( ) 50 10 20 30 50 70 100 200 300 500 700 1.0K I C , COLLECTOR CURRENT (A) Figure 7. Wideband M9-3/6 LESHAN RADIO COMPANY, LTD. BCW60ALT1 BCW60BLT1 BCW60DLT1 TYPICAL NOISE CHARACTERISTICS 400 hFE , DC CURRENT GAIN T J = 125C 25C 200 - 55C 100 80 60 V CE= 1.0 V V CE= 10 V 40 0.0040.006 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 Figure 8. DC Current Gain 100 I C , COLLECTOR CURRENT (mA) 1.0 T J = 25C 0.8 I C= 1.0 mA 0.6 50 mA 10 mA 100 mA 0.4 0.2 0 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 80 I B= 500 A 400 A 300 A 60 200 A 40 100 A 20 20 25 30 35 40 Figure 10. Collector Characteristics V BE(sat) @ I C /I B = 10 V BE(on)@ V CE= 1.0 V 0.4 V CE(sat) @ I C /I B = 10 0 0.1 15 Figure 9. Collector Saturation Region 1.0 0.2 10 V CE , COLLECTOR-EMITTER VOLTAGE (VOLTS) 1.2 0.6 5.0 I B , BASE CURRENT (mA) T J = 25C 0.8 0 20 1.4 V, VOLTAGE (VOLTS) T A = 25C PULSE WIDTH =300 s DUTY CYCLE<2.0% 0 0.002 0.0050.010.02 0.2 0.5 1.0 2.0 5.0 10 20 50 100 V , TEMPERATURE COEFFICIENTS (mV/C) V CE , COLLECTOR- EMITTER VOLTAGE (VOLTS) I C , COLLECTOR CURRENT (mA) 1.6 *APPLIES for I C / I B< h FE / 2 0.8 25C to 125C VC for V CE(sat) 0 -55C to 25C -0.8 25C to 125C -1.6 VB for V BE -55C to 25C -2.4 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 I C , COLLECTOR CURRENT (mA) I C , COLLECTOR CURRENT (mA) Figure 11. "On" Voltages Figure 12. Temperature Coefficients 100 M9-4/6 LESHAN RADIO COMPANY, LTD. BCW60ALT1 BCW60BLT1 BCW60DLT1 TYPICAL DYNAMIC CHARACTERISTICS 300 1000 V CC= 3.0 V IC /I B= 10 T J= 25C 200 100 700 ts 500 300 200 50 tf 30 100 t, TIME (ns) t, TIME (ns) 70 20 td @ V BE(off)= 0.5 Vdc 10 7.0 5.0 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 20 100 tf VCC= 3.0 V IC /I B= 10 IB1=IB2 T J= 25C 1.0 2.0 3.0 5.0 7.0 10 20 30 50 I C , COLLECTOR CURRENT (mA) I C , COLLECTOR CURRENT (mA) Figure 13. Turn-On Time Figure 14. Turn-Off Time 70 100 10.0 500 T J = 25C f=100MHz 300 200 C, CAPACITANCE (pF) V CE=20 V 5.0 V 100 70 50 0.5 T J= 25C f = 1.0MHz 7.0 C ib 5.0 C ob 3.0 2.0 1.0 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 I C , COLLECTOR CURRENT (mA) V R , REVERSE VOLTAGE (VOLTS) Figure 15. Current-Gain -- Bandwidth Product Figure 16. Capacitance 20 10 7.0 h fe ~ ~ VCE= 10 Vdc f = 1.0 kHz T A = 25C 200 @ I C= 1.0 mA 5.0 3.0 2.0 1.0 0.7 0.5 0.3 0.2 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 hoe , OUTPUT ADMITTANCE ( mhos ) f T, CURRENT- GAIN -- BANDWIDTH PRODUCT (MHz) 30 10 3.0 h ie , INPUT IMPEDANCE ( k ) 70 50 20 50 200 100 70 50 VCE= 10 Vdc f = 1.0 kHz T A= 25C h fe 30 ~ ~ 200 @ I C= 1.0 mA 20 10 7.0 5.0 3.0 2.0 0.1 0.2 0.5 1.0 2.0 5.0 10 20 I C , COLLECTOR CURRENT (mA) I C , COLLECTOR CURRENT (mA) Figure 17. Input Impedance Figure 18. Output Admittance 50 100 M9-5/6 LESHAN RADIO COMPANY, LTD. BCW60ALT1 BCW60BLT1 BCW60DLT1 r( t) TRANSIENT THERMAL RESISTANCE(NORMALIZED) 1.0 0.7 0.5 D = 0.5 0.3 0.2 0.2 0.1 0.1 FIGURE 19A 0.05 0.07 0.05 P(pk) PULSE TRAIN SHOWN READ TIME AT t 1 (SEE AN-569) 0.02 0.03 t 0.01 0.02 1 SINGLE PULSE 0.01 0.01 0.02 0.05 0.1 0.2 0.5 1.0 t 2.0 5.0 10 20 50 100 200 DUTY CYCLE, D = t 1 / t 2 D CURVES APPLY FOR POWER Z JA(t) = r(t) * RJA T J(pk) - T A = P (pk) Z JA(t) 2 500 1.0k 2.0k 5.0k 10k 20k 50k 100k t, TIME (ms) Figure 19. Thermal Response 104 DESIGN NOTE: USE OF THERMAL RESPONSE DATA V CC = 30 Vdc I C , COLLECTOR CURRENT (nA) 103 I CEO 102 101 I CBO AND 100 I CEX @ V BE(off) = 3.0 Vdc 10-1 10-2 -4 -2 0 +20 +40 +60 +80 +100 +120 +140 +160 T J , JUNCTION TEMPERATURE (C) Figure 19A. A train of periodical power pulses can be represented by the model as shown in Figure 19A. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 19 was calculated for various duty cycles. To find Z JA(t) , multiply the value obtained from Figure 19 by the steady state value R JA . Example: The MPS3904 is dissipating 2.0 watts peak under the following conditions: t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2) Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22. The peak rise in junction temperature is therefore T = r(t) x P (pk) x R JA = 0.22 x 2.0 x 200 = 88C. For more information, see AN-569. I C , COLLECTOR CURRENT (mA) 400 1.0 ms The safe operating area curves indicate I C -V CE limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve. The data of Figure 20 is based upon T J(pk) = 150C; T C or T A is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided T J(pk) <150C. T J(pk) may be calculated from the data in Figure 19. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. 100s 200 T C = 25C 100 60 10s 1.0 s dc T A = 25C dc 40 T J = 150C 20 10 CURRENT LIMIT 6.0 THERMAL LIMIT SECOND BREAKDOWN LIMIT 4.0 2.0 4.0 6.0 8.0 10 20 40 V CE , COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 20. M9-6/6