uPN +
tN
tN + tS
tS
tN + tSuPS
PC =
ADC108S052
www.ti.com
SNAS337G –SEPTEMBER 2005–REVISED MARCH 2013
POWER SUPPLY CONSIDERATIONS
There are three major power supply concerns with this product: power supply sequencing, power management,
and the effect of digital supply noise on the analog supply.
Power Supply Sequence
The ADC108S052 is a dual-supply device. The two supply pins share ESD resources, so care must be exercised
to ensure that the power is applied in the correct sequence. To avoid turning on the ESD diodes, the digital
supply (VD) cannot exceed the analog supply (VA) by more than 300 mV, not even on a transient basis.
Therefore, VAmust ramp up before or concurrently with VD.
Power Management
The ADC108S052 is fully powered-up whenever CS is low and fully powered-down whenever CS is high, with
one exception. If operating in continuous conversion mode, the ADC108S052 automatically enters power-down
mode between SCLK's 16th falling edge of a conversion and SCLK's 1st falling edge of the subsequent
conversion (see Figure 2).
In continuous conversion mode, the ADC108S052 can perform multiple conversions back to back. Each
conversion requires 16 SCLK cycles and the ADC108S052 will perform conversions continuously as long as CS
is held low. Continuous mode offers maximum throughput.
In burst mode, the user may trade off throughput for power consumption by performing fewer conversions per
unit time. This means spending more time in power-down mode and less time in normal mode. By utilizing this
technique, the user can achieve very low sample rates while still utilizing an SCLK frequency within the electrical
specifications. The Power Consumption vs. SCLK curve in the Typical Performance Characteristics section
shows the typical power consumption of the ADC108S052. To calculate the power consumption (PC), simply
multiply the fraction of time spent in the normal mode (tN) by the normal mode power consumption (PN), and add
the fraction of time spent in shutdown mode (tS) multiplied by the shutdown mode power consumption (PS) as
shown in Figure 38.
Figure 38. Power Consumption Equation
Power Supply Noise Considerations
The charging of any output load capacitance requires current from the digital supply, VD. The current pulses
required from the supply to charge the output capacitance will cause voltage variations on the digital supply. If
these variations are large enough, they could degrade SNR and SINAD performance of the ADC. Furthermore, if
the analog and digital supplies are tied directly together, the noise on the digital supply will be coupled directly
into the analog supply, causing greater performance degradation than would noise on the digital supply alone.
Similarly, discharging the output capacitance when the digital output goes from a logic high to a logic low will
dump current into the die substrate, which is resistive. Load discharge currents will cause "ground bounce" noise
in the substrate that will degrade noise performance if that current is large enough. The larger the output
capacitance, the more current flows through the die substrate and the greater the noise coupled into the analog
channel.
The first solution to keeping digital noise out of the analog supply is to decouple the analog and digital supplies
from each other or use separate supplies for them. To keep noise out of the digital supply, keep the output load
capacitance as small as practical. If the load capacitance is greater than 50 pF, use a 100 Ωseries resistor at
the ADC output, located as close to the ADC output pin as practical. This will limit the charge and discharge
current of the output capacitance and improve noise performance. Since the series resistor and the load
capacitance form a low frequency pole, verify signal integrity once the series resistor has been added.
Copyright © 2005–2013, Texas Instruments Incorporated Submit Documentation Feedback 19
Product Folder Links: ADC108S052