IRFB4215PbF
HEXFET® Power MOSFET
09/16/10
Parameter Typ. Max. Units
RθJC Junction-to-Case –– 0.56
RθCS Case-to-Sink, Flat, Greased Surface 0.24 ––– °C/W
RθJA Junction-to-Ambient ––– 40
Thermal Resistance
www.irf.com 1
VDSS = 60V
RDS(on) = 9.0m
ID = 115A
S
D
G
Advanced HEXFET® Power MOSFETs from International Rectifier
utilize advanced processing techniques to achieve extremely low
on-resistance per silicon area. This benefit, combined with the fast
switching speed and ruggedized device design that HEXFET power
MOSFETs are well known for, provides the designer with an extremely
efficient and reliable device for use in a wide variety of applications.
lAdvanced Process Technology
lUltra Low On-Resistance
lDynamic dv/dt Rating
l175°C Operating Temperature
lFast Switching
lFully Avalanche Rated
lOptimized for SMPS Applications
lLead-Free
Description
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 115
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 81 A
IDM Pulsed Drain Current  360
PD @TC = 25°C Power Dissipation 270 W
Linear Derating Factor 1.8 W/°C
VGS Gate-to-Source Voltage ± 20 V
IAR Avalanche Current85 A
EAR Repetitive Avalanche Energy18 mJ
dv/dt Peak Diode Recovery dv/dt  4.7 V/ns
TJOperating Junction and -55 to + 175
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Mounting torque, 6-32 or M3 srew 10 lbf•in (1.1N•m)
TO-220AB
PD - 95757A
IRFB4215PbF
2www.irf.com
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode)––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.2 V TJ = 25°C, IS = 90A, VGS = 0V 
trr Reverse Recovery Time ––– 78 120 ns TJ = 25°C, IF = 64A
Qrr Reverse Recovery Charge ––– 250 380 nC di/dt = 100A/µs 
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Source-Drain Ratings and Characteristics
115
360
A
Starting TJ = 25°C, L = 60µH
RG = 25, IAS = 85A, VGS=10V (See Figure 12)
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11)
Notes:
ISD 90A, di/dt 250A/µs, VDD V(BR)DSS,
TJ 175°C
Pulse width 400µs; duty cycle 2%.
This is a typical value at device destruction and represents
operation outside rated limits.
This is a calculated value limited to TJ = 175°C .
This is tested with same test conditions as the existing data sheet
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 60 –– –– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.066 V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– ––– 9.0 mVGS = 10V, ID = 54A 
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA
gfs Forward Transconductance 61 ––– ––– S VDS = 25V, ID = 54A
––– ––– 25 µA VDS = 60V, VGS = 0V
––– ––– 250 VDS = 48V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -100 nA VGS = -20V
QgTotal Gate Charge –– –– 170 ID = 64A
Qgs Gate-to-Source Charge ––– –– 39 nC VDS = 48V
Qgd Gate-to-Drain ("Miller") Charge ––– ––– 59 VGS = 10V, See Fig. 6 and 13
td(on) Turn-On Delay Time ––– 22 ––– VDD = 30V
trRise Time ––– 160 ––– ID = 64A
td(off) Turn-Off Delay Time –– 77 ––– RG = 6.2
tfFall Time ––– 110 ––– VGS = 10V, See Fig. 10 
Between lead,
––– ––– 6mm (0.25in.)
from package
and center of die contact
Ciss Input Capacitance ––– 4080 ––– VGS = 0V
Coss Output Capacitance –– 840 ––– VDS = 25V
Crss Reverse Transfer Capacitance ––– 180 ––– pF ƒ = 1.0MHz, See Fig. 5
EAS Single Pulse Avalanche Energy––– 1080220mJ IAS = 90A, L = 54µH
nH
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
LDInternal Drain Inductance
LSInternal Source Inductance ––– –––
S
D
G
IGSS
ns
4.5
7.5
IDSS Drain-to-Source Leakage Current
IRFB4215PbF
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
1000
0.1 1 10 100
20µs PULSE WIDTH
T = 25 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
10
100
1000
0.1 1 10 100
20µs PULSE WIDTH
T = 175 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1000
4.0 5.0 6.0 7.0 8.0 9.0 10.0
V = 25V
20µs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J°
T = 175 C
J°
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
70A
IRFB4215PbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
1 10 100
0
1000
2000
3000
4000
5000
6000
7000
V , Drain-to-Source Voltage (V)
C, Capacitance (pF)
DS
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GS
iss gs gd , ds
rss gd
oss ds gd
Ciss
Coss
Crss
040 80 120 160 200
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
64A
V = 12V
DS
V = 30V
DS
V = 48V
DS
0.1
1
10
100
1000
0.0 0.5 1.0 1.5 2.0
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J°
T = 175 C
J°
1 10 100 1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
IRFB4215PbF
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
VGS
+
-
VDD
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z
thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.266 0.00036
0.294 0.003748
τJ
τJ
τ1
τ1
τ2
τ2
R1
R1R2
R2
τ
τC
Ci i/Ri
Ci= τi/Ri
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
20
40
60
80
100
120
ID , Drain Current (A)
LIMITED BY PACKAGE
IRFB4215PbF
6www.irf.com
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
VGS
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
0
200
400
600
800
1000
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 12A
18A
BOTTOM 85A
IRFB4215PbF
www.irf.com 7
Peak Diode Recovery dv/dt Test Circuit
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
+
-
+
+
+
-
-
-
RG
VDD
dv/dt controlled by RG
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T*Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
* Reverse Polarity of D.U.T for P-Channel
VGS
[ ]
[ ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
[ ] ***
Fig 14. For N-channel HEXFET® power MOSFETs
IRFB4215PbF
8www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/2010
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
TO-220AB packages are not recommended for Surface Mount Application.
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
Note: "P" inassembly line pos ition
i ndi cates "L ead - F r ee"
LINE C
WEEK 19
PART NUMBER
DAT E CODE
YEAR 7 = 1997
AS S E MBLED ON WW 19, 1997
THIS IS AN IRF1010 EXAMPLE:
IN THE ASSEMBLY LINE "C"
LOT CODE 1789 INTERNATIONAL
ASSEMBLY
LOT CODE
RECTIFIER
LOGO