Preview Products IRFP360, IRFP362 Avalanche-Energy-Rated N-Channel Power MOSFETs _ 23 A and 20 A, 400 V lpstom = 0.20 N and 0.25 Q Features: = Single pulse avalanche energy rated a SOA is power-dissipation limited wa Nanosecond switching speeds a Linear transfer characteristics w High input impedance The IRFP360 and IRFP362 are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of opera- tion. These are n-channel enharicement-mode silicon-gate power field-effect transistors designed for applications such File Number 2290 N-CHANNEL ENHANCEMENT MODE 9208-42658 TERMINAL DIAGRAM TERMINAL DESIGNATION as switching regulators, switching converters, motor drivers, SOURCE relay drivers, and drivers for high-power bipolar switching E_] KS transistors requiring high speed and low gate-drive power. DRAIN These types can be operated directly from integrated DRAIN O + ____# circuits. (TAB) Po The IRFP-types are supplied in the JEDEC TO-247 plastic ri | package. TOP VIEW oaTe JEDEC TO-247 ABSOLUTE MAXIMUM RATINGS Parameter tRFP360 IRFP362 Units Ip @ Te = 25C Continuous Drain Current 23 20 A Ip @ Te = 100C Continuous Drain Current 14 13 A lpm Pulsed Drain Current 92 80 A Pp @ Tr = 26C Max. Power Dissipation 250 Ww Linear Derating Factor 2.0 Wwrc Ves Gate-to-Source Voltage +20 Vv Eas Single Pulse Avalanche Energy @ 1200 mJ (See Fig: 14) lar Avalanche Current 23 A Ty Operating Junction -55 to 150 c Tste Storage Tamperature Ranga Lead Temperatura 300 (0.063 in. (1.6mm) from case for 10s) C 11-16Preview Products IRFP360, IRFP362 ELECTRICAL CHARACTERISTICS At Case Temperature (T,) = 25C Unless Otherwise Specified Parameter Type Min. Typ. Max. Units Test Conditions BV Orain-to-Source Breakdown Voltage | IRFP360 DSS 9 IRFP362 | 400 - - v Vas = OV, Ip = 250A Rpsion) _ Static Drain-to-Source IRFP360. - 0.18 0.20 Q Ves = 10V, Ip = 13A On-State Resistance @ TRFP362 = 0.20 025 'pon) On-State Drain Current @ IRFP360 23 _ _ A Vos> 'pion) * Rosion) Max. IRFP362 | 20 Veg = 10V Vasith) Gate Threshold Vottage ALL 2.0 _ 40 v Vos = Vas: 'p = 250HA Sts Forward Transconductance @ ALL 14 21 - S(O) Vos 2 SOV, Ipg = 13A loss Zero Gate Voltage Drain Current - - 250 Vps = Max. Rating, Vgs = 0V ALL ~ 1000 vA Vpg = 0.8 x Max. Rating, V@g = OV, Ty = 125C less Gate-to-Source Leakage Forward ALL - _ 500 nA Vag = 20V less Gate-to-Source Leakage Reverse ALL _ ad -00 nA Veg = -20V Qg Total Gate Charge ALL _ 68 100 nc Vas = 10V, Ip = 254 Vps = 0.8 x Max. Rating Gate-to-Sor hi ALL _ 17 nc Qgs urce Charge 25 See Fig. 16 Qo Gate-to-Drain (Miller) Charge - 24 36 nc (Independent of operating temperature) ta(on) Turn-On Delay Time ALL _ 22 33 ns Vpp = 200V, Ip = 25A, Ag = 4.302 t Rise Time ALL - 94 140 ns Rp = 7.50 ta(otf) Turn-Off Delay Time ALL - 80 120 ns See Fig. 15 Fall Time ALL - 66 99 ns (Independent of operating temperature) Lp Internal Drain inductance ALL - 5.0 _ nH Measured from the drain Modified MOSFET symbol lead, 6mm (0.25 in.) trom showing the internal package to center of die. inductances. o Ls internal Source Inductance ALL - 13 _ nH Measured from the source lead, 6mm (0.25 in.) from g package to source bonding pad. s Cigs Input Capacitance ALL _ 4000 _ pF Vas = OV. Vos = 25V Coss Output Capacitance ALL _ 550 _ pF f = 1.0 MHz Crsg Reverse Transfer Capacitance ALL - 97 - pF See Fig. 10 Rie Junction-to-Case ALL _ _ 0.50 CW Rines Case-to-Sink ALL _ 0.24 _ C/W | Mounting surface flat, smooth, and greased Rena Junction-to-Ambient . ALL - - 40 C/W | Typical socket mount Mounting torque ALL = _ 10 in.@lbs. | Standard 6-32 screw @ Repetitive Rating; Pulse width limited by @ Pulse width < 300 us; Duty Cycle < 2% maximum junction temperature (see figure 5) Refer to current HEXFET reliability report @ @Vop = SOV, Starting Ty = 26C, L = 4.0mH, Rg = 250, Peak IL = 23A SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS Parameter Type Min. Typ. Max. Units Test Conditions Ig Continuous Source Current ALL ~ - 23 A Modified MOSFET symbol showing the integral o {Body Diode) Reverse p-n junction rectifier. Ism Pulsed Source Current ALL _ ~ 92 A $ (Body Diode) s Vsp Diode Forward Voltage @ ALL - - 1.8 v Ty = 25C, Ig = 234, Vgg = OV ter Reverse Recovery Time ALL 200 460 1000 ns Ty = 25C, Ip = 254A, di/dt = 100 A/us Gar Reverse Recovery Charge ALL 3.1 7.1 16 Hc ton Forward Turn-On Time ALL intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. 11-17Preview Products IRFP360, IRFP362 40 10V @ 32 - w 8 z = az 24 = + a 2 a i) c x > c oO > 2 16 5 Z 4 <= a at 9 5 2 a 2 Vggt5. OV 4.5V 0 4.0V 40 a0 420 {60 200 0 2 4 6 a 10 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS} Vgg GATE-TO-SOURCE VOLTAGE (VOLTS Fig. 1 - Typical output characteristics. Fig. 2 - Typical transfer characteristics. 103 5 OPERATION IN THIS AREA LIMITED BY Ros (ON) = 2 rn = g B 102 a iv g wi s g = 5 5 2 Ww ii x f 10 g 3B 5 o o 65 q Zz < < 2 & z a 1 2 SET Te = 25C Ty=150C 2/7 SINGLE PULSE : 0.1 0 2 4 6 8 10 + 2 5 0 2 102. 2 103 Yps- DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) 92GS-44233 Fig. 3 - Typical saturation characteristics. Fig. 4 - Maximum safe operating area. NOTES: 1. DUTY FACTOR, D=t,/to 2. PEAK Ty=Pom X Zthuc + Te THERMAL RESPONSE (Zn uc) 4075 10-4 1073 4072 0.41 4 10 t4. RECTANGULAR PULSE DURATION (SECONDS) Fig. 5 - Maximum effective transient thermal impedance, junction-to-case vs. pulse duration. 11-18Preview Products TRANSCONDUCTANCE (SIEMENS) fs. 5 10 20 30 40 50 Ip. DRAIN CURRENT (AMPERES) Fig. 6 - Typical transconductance vs. drain current. 0.85 BVogg. ORAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMAL IZEQ) 0.75 60-40-20 0 20 40 GO 80 100 120 140 160 Ty, JUNCTION TEMPERATURE ( C) Fig. 8 - Breakdown voitage vs. temperature. 10000 Cgg + Cgg Cys SHORTED = gd 8000 Cys + Cgs Cgg / (Cys + Q Cgg + C, 6 OS gd iw 6000 z <= e 4 oOo < a 4000 oO oC 2000 1 e 5 40 2 5 102 Vg. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 10 - Typical capacitance vs. drain-to-source voltage. IRFP360, IRFP362 ry a yo a oO 7 a Ipq. REVERSE ORAIN CURRENT (AMPERES) n 0.0 0.4 0.8 1.2 1.6 2.0 Vgp. SOURCE-TO-ORAIN VOLTAGE {VGLTS) Fig. 7 - Typical source-drain diode forward voltage. a nM DRAIN-TO-SOURCE ON RESISTANCE (NORMALIZED) Ros (on) + Veg = 10V 0.0 60-40-20 0 20 40 60 80 100 120 140 160 Ty, JUNCTION TEMPERATURE ( C) Fig. 9 - Normalized on-resistance vs. temperature. Vog = 320M, v = BOV Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS FOR TEST CIRCUIT SEE FIGURE 16 0 25 50 75 100 125 q TOTAL GATE CHARGE (nC) ig Fig. 11 - Typical gate charge vs. gate-to-source voltage. 11-19Prev lew Products IRFP360, IRFP362 Gs = 11-20 4 ODRAIN-TO~SOURCE ON RESISTANCE 0 - OO. 2 yn a 0. 0 30 60 90 Ip. ORAIN CURRENT (AMPERES) Fig. 12 - Typical on-resistance vs. drain current. Vos VARY Ip TO OBTAIN REQUIRED PEAK |, put Fig. 14a - Unclamped inductive test circuit. 8Voss Fig. 14b - Unclamped inductive waveforms. CHARGE Fig. 16a - Basic gate charge waveform. a Yoo ~ Ye Ves = 10V | | ( oon LAF R360 Ip. DRAIN CURRENT (AMPERES) 0 150 25 50 100 125 1 Tc, CASE TEMPERATURE (C) Fig. 13 - Maximum drain current vs. case temperature. Ro + +> vp ai DUT Ag $ PULSE WIDTH < 1 ys DUTY FACTOR <0 19% T Fig. 15a - Switching time test circuit. | ! } ta(on) | Fig. 15b - Switching time waveforms. +Vps ISOLATED UPPLY) 12v 7 BATTERY -Vos g a) CURRENT CURRENT SAMPLI SAMPLING RESISTOR RESISTOR Fig. 16b - Gate charge test circuit.