WLCSP132
(4.57 X 4.37 mm)
LQFP64
(10 x 10 mm)
LQFP100
(14 x 14 mm)
LQFP144
(20x20 mm)
LQFP176
(24 x 24 mm)
TFBGA100
(8 x 8 mm)
TFBGA216
(13x13 mm)
TFBGA225
(13x13 mm)
FBGA
UFBGA169
(7 x 7 mm)
UFBGA176+25
(10x10 mm)
FBGA
Features
Core
32-bit Arm® Cortex®-M7 core with double-precision FPU and L1 cache:
16 Kbytes of data and 16 Kbytes of instruction cache allowing to fill one cache
line in a single access from the 128-bit embedded Flash memory; frequency up
to 280 MHz, MPU, 599 DMIPS/ 2.14 DMIPS/MHz (Dhrystone 2.1), and DSP
instructions
Memories
2 Mbytes of Flash memory with read while write support, plus 1 Kbyte of OTP
memory
~1.4 Mbytes of RAM: 192 Kbytes of TCM RAM (inc. 64 Kbytes of ITCM RAM +
128 Kbytes of DTCM RAM for time critical routines), 1.18 Mbytes of user SRAM,
and 4 Kbytes of SRAM in Backup domain
2x Octo-SPI memory interfaces with on-the-fly decryption, I/O multiplexing and
support for serial PSRAM/NOR, Hyper RAM/Flash frame formats, running up to
140 MHz in SRD mode and up to 110 MHz in DTR mode
Flexible external memory controller with up to 32-bit data bus:
SRAM, PSRAM, NOR Flash memory clocked up to 125 MHz in
Synchronous mode
SDRAM/LPSDR SDRAM
8/16-bit NAND Flash memories
CRC calculation unit
Security
ROP, PC-ROP, active tamper, secure firmware upgrade support, Secure access
mode
General-purpose input/outputs
Up to 168 I/O ports with interrupt capability
Fast I/Os capable of up to 133 MHz
Up to 164 5-V-tolerant I/Os
Low-power consumption
Stop: down to 32 µA with full RAM retention
Standby: 2.8 µA (Backup SRAM OFF, RTC/LSE ON, PDR OFF)
VBAT: 0.8 µA (RTC and LSE ON)
Clock management
Internal oscillators: 64 MHz HSI, 48 MHz HSI48, 4 MHz CSI, 32 kHz LSI
External oscillators: 4-50 MHz HSE, 32.768 kHz LSE
3× PLLs (1 for the system clock, 2 for kernel clocks) with fractional mode
Product summary
STM32H7B3xI
STM32H7B3RI,
STM32H7B3VI,
STM32H7B3QI,
STM32H7B3ZI,
STM32H7B3AI,
STM32H7B3II,
STM32H7B3NI,
STM32H7B3LI
32-bit Arm® Cortex®-M7 280 MHz MCUs, 2-Mbyte Flash memory, 1.4 Mbyte
RAM, 46 com. and analog interfaces, SMPS, crypto
STM32H7B3xI
Datasheet
DS13139 - Rev 6 - September 2020
For further information contact your local STMicroelectronics sales office. www.st.com
Reset and power management
2 separate power domains, which can be independently clock gated to maximize
power efficiency:
CPU domain (CD) for Arm® Cortex® core and its peripherals, which can be
independently switched in Retention mode
Smart run domain (SRD) for reset and clock control, power management
and some peripherals
1.62 to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
Dedicated USB power embedding a 3.3 V internal regulator to supply the
internal PHYs
Dedicated SDMMC power supply
High power efficiency SMPS step-down converter regulator to directly supply
VCORE or an external circuitry
Embedded regulator (LDO) with configurable scalable output to supply the
digital circuitry
Voltage scaling in Run and Stop mode
Backup regulator (~0.9 V)
Low-power modes: Sleep, Stop and Standby
VBAT battery operating mode with charging capability
CPU and domain power state monitoring pins
Interconnect matrix
3 bus matrices (1 AXI and 2 AHB)
Bridges (5× AHB2APB, 3× AXI2AHB)
5 DMA controllers to unload the CPU
1× high-speed general-purpose master direct memory access controller
(MDMA)
2× dual-port DMAs with FIFO and request router capabilities
1× basic DMA with request router capabilities
1x basic DMA dedicated to DFSDM
Up to 35 communication peripherals
4× I2C FM+ interfaces (SMBus/PMBus)
5× USART/5x UARTs (ISO7816 interface, LIN, IrDA, modem control) and 1x
LPUART
6× SPIs, including 4 with muxed full-duplex I2S audio class accuracy via internal
audio PLL or external clock and 1 x SPI/I2S in LP domain (up to 125 MHz)
2x SAIs (serial audio interface)
SPDIFRX interface
SWPMI single-wire protocol master interface
MDIO Slave interface
2× SD/SDIO/MMC interfaces (up to 133 MHz)
2× CAN controllers: 2 with CAN FD, 1 with time-triggered CAN (TT-CAN)
1× USB OTG interfaces (1HS/FS)
HDMI-CEC
8- to 14-bit camera interface up to 80 MHz
8-/16-bit parallel synchronous data input/output slave interface (PSSI)
STM32H7B3xI
DS13139 - Rev 6 page 2/234
11 analog peripherals
2× ADCs with 16-bit max. resolution (up to 24 channels, up to 3.6 MSPS)
1× analog and 1x digital temperature sensors
1× 12-bit single-channel DAC (in SRD domain) + 1× 12-bit dual-channel DAC
2× ultra-low-power comparators
2× operational amplifiers (8 MHz bandwidth)
2× digital filters for sigma delta modulator (DFSDM), 1x with 8 channels/8 filters
and 1x in SRD domain with 2 channels/1 filter
Graphics
LCD-TFT controller up to XGA resolution
Chrom-ART graphical hardware Accelerator (DMA2D) to reduce CPU load
Hardware JPEG Codec
Chrom-GRC (GFXMMU)
Up to 19 timers and 2 watchdogs
2× 32-bit timers with up to 4 IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input (up to 280 MHz)
2× 16-bit advanced motor control timers (up to 280 MHz)
10× 16-bit general-purpose timers (up to 280 MHz)
3× 16-bit low-power timers (up to 280 MHz)
2× watchdogs (independent and window)
1× SysTick timer
RTC with sub-second accuracy and hardware calendar
Cryptographic acceleration
AES chaining modes: ECB,CBC,CTR,GCM,CCM for 128, 192 or 256
HASH (MD5, SHA-1, SHA-2), HMAC
2x OTFDEC AES-128 in CTR mode for Octo-SPI memory encryption/decryption
1x 32-bit, NIST SP 800-90B compliant, true random generator
Debug mode
SWD and JTAG interfaces
4 KB Embedded Trace Buffer
96-bit unique ID
All packages are ECOPACK2 compliant
STM32H7B3xI
DS13139 - Rev 6 page 3/234
1Introduction
This datasheet provides the ordering information and mechanical device characteristics of the STM32H7B3xI
microcontrollers.
This document should be read in conjunction with the STM32H7B3xI reference manual (RM0455). The reference
manual is available from the STMicroelectronics website www.st.com.
For information on the Arm® Cortex®-M7 core, refer to the Cortex®-M7 Technical Reference Manual, available
from the www.arm.com website
Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
STM32H7B3xI
Introduction
DS13139 - Rev 6 page 4/234
2Description
STM32H7B3xI devices are based on the high-performance Arm® Cortex®-M7 32-bit RISC core operating at up to
280 MHz. The Cortex® -M7 core features a floating point unit (FPU) which supports Arm® double-precision (IEEE
754 compliant) and single-precision data-processing instructions and data types. STM32H7B3xI devices support
a full set of DSP instructions and a memory protection unit (MPU) to enhance application security.
STM32H7B3xI devices incorporate high-speed embedded memories with a dual-bank Flash memory of 2 Mbytes,
around 1.4 Mbyte of RAM (including 192 Kbytes of TCM RAM, 1.18 Mbytes of user SRAM and 4 Kbytes of
backup SRAM), as well as an extensive range of enhanced I/Os and peripherals connected to four APB buses,
three AHB buses, a 32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and
external memory access.
All the devices offer two ADCs, two DACs (one dual and one single DAC), two ultra-low power comparators, a
low-power RTC, 12 general-purpose 16-bit timers, two PWM timers for motor control, three low-power timers, a
true random number generator (RNG), and a cryptographic acceleration cell and a HASH processor. The devices
support nine digital filters for external sigma delta modulators (DFSDM). They also feature standard and
advanced communication interfaces.
Standard peripherals
Four I2Cs
Five USARTs, five UARTs and one LPUART
Six SPIs, four I2Ss in full-duplex mode. To achieve audio class accuracy, the I2S peripherals can be
clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
Two SAI serial audio interfaces, out of which one with PDM
One SPDIFRX interface
One single wire protocol master interface (SWPMI)
One 16-bit parallel synchronous slave interface (PSSI) sharing the same interface as the digital
camera)
Management Data Input/Output (MDIO) slaves
Two SDMMC interfaces (one can be supplied from a supply voltage separate from that of all other I/Os)
A USB OTG high-speed with full-speed capability (with the ULPI)
One FDCAN plus one TT-CAN interface
Chrom-ART Accelerator
HDMI-CEC
Advanced peripherals including
A flexible memory control (FMC) interface
Two octo-SPI memory interface with on-the-fly decryption (OTFDEC)
A digital camera interface for CMOS sensors (DCMI)
A graphic memory management unit (GFXMMU)
An LCD-TFT display controller (LTDC)
A JPEG hardware compressor/decompressor
Refer to Table 1. STM32H7B3xI features and peripheral counts for the list of peripherals available on each part
number.
STM32H7B3xI devices operate in the –40 to +85 °C ambient temperature range from a 1.62 to 3.6 V power
supply. The supply voltage can drop down to 1.62 V by using an external power supervisor (see
Section 3.5.2 Power supply supervisor) and connecting the PDR_ON pin to VSS. Otherwise the supply voltage
must stay above 1.71 V with the embedded power voltage detector enabled.
The USB OTG_HS/FS interfaces can be supplied either by the integrated USB regulator or through a separate
supply input.
A dedicated supply input is available for one of the SDMMC interface for package with more than 100 pins. It
allows running from a different voltage level than all other I/Os.
A comprehensive set of power-saving mode allows the design of low-power applications.
The CPU and domain states can be directly monitored on some GPIOs configured as alternate functions.
STM32H7B3xI
Description
DS13139 - Rev 6 page 5/234
STM32H7B3xI devices are offers in several packages ranging from 64 pins to 225 pins/balls. The set of included
peripherals changes with the device chosen.
These features make the STM32H7B3xI microcontrollers suitable for a wide range of applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Mobile applications, Internet of Things
Wearable devices: smart watches.
Figure 1. STM32H7B3xI block diagram shows the general block diagram of the device family.
STM32H7B3xI
Description
DS13139 - Rev 6 page 6/234
Table 1. STM32H7B3xI features and peripheral counts
Peripherals
SMPS (1) no-SMPS
STM32H7B3LIH
STM32H7B3IIK
STM32H7B3IIT
STM32H7B3AII
STM32H7B3ZIT
STM32H7B3QIY
STM32H7B3VIH
STM32H7B3VIT
STM32H7B3NIH
STM32H7B3IIK
STM32H7B3IIT
STM32H7B3ZIT
STM32H7B3VIH
STM32H7B3VIT
STM32H7B3RIT
Flash memory (Kbytes) 2048
SRAM in
Kbytes
SRAM on AXI 1024
SRAM on AHB
(CD domain) 128
SRAM on AHB
(SRD domain) 32
TCM RAM in
Kbytes
ITCM RAM
(instruction) 64
DTCM RAM
(data) 128
Backup SRAM (Kbytes) 4
FMC
Interface 1
NOR Flash
memory/RAM
controller
xx (2) -x(2) - x x(2) -
Multiplexed I/O
NOR Flash
memory
xx(2) xx(2) -
16-bit NAND
Flash memory xx(2) - x x(2) -
SDRAM
controller xx(2) - x x(2) -
Octo-SPI interfaces(3) 22 (4) 2 (5) 11 Quad-
SPI 22(4) 11 Quad-
SPI
Timers
General-
purpose 10
Advanced-
control (PWM) 2
Basic 2
Low-power 3
Window watchdog /
independent watchdog 1/1
DS13139 - Rev 6 page 7/234
STM32H7B3xI
Peripherals
SMPS (1) no-SMPS
STM32H7B3LIH
STM32H7B3IIK
STM32H7B3IIT
STM32H7B3AII
STM32H7B3ZIT
STM32H7B3QIY
STM32H7B3VIH
STM32H7B3VIT
STM32H7B3NIH
STM32H7B3IIK
STM32H7B3IIT
STM32H7B3ZIT
STM32H7B3VIH
STM32H7B3VIT
STM32H7B3RIT
Real-time Clock (RTC) 1
Tamper pins
(6)
Passive 3 2 3 2
Active 2 1 2 1
Random number generator 1
Cryptographic accelerator 1
Hash processor (HASH) 1
On-the-fly
decryption
for external
Octo-SPI
memory
2 2 2(2) 2 2 2(2)
Communi-
cation
interfaces
SPI/I2S (7) 6/4 5/4 5(2)/4 6/4 5/4 4/4
I2C 4 3
USART/UART
/LPUART
5/5
/1
5(2)/5(2)
/1
5(2)/5
/1
4(2)/5(2)
/1
5/5
/1
5(2)/5
/1
4(2)/3(2)
/1
SAI/PDM 2/1 2(2)/1(2) 2(2)/1 2/1 2(2)/1 1(2)/-
SPDIFRX 4 inputs - 4 inputs
SWPMI 1
MDIOS 1
SDMMC 2 2 (8) 22(8)
FDCAN/TT-
CAN 1/1 1/1(2)
USB OTG_HS
ULPI, OTG_FS
PHY
11(9) 11(9) 11(9) 11 (9) 1 (10)
Digital camera interface/PSSI
(11) 1/1 1/1(2)
LCD-TFT display controller 1
JPEG Codec 1
Chrom-ART Accelerator
(DMA2D) 1
Graphic memory management
unit (GFXMMU) 1
DS13139 - Rev 6 page 8/234
STM32H7B3xI
Peripherals
SMPS (1) no-SMPS
STM32H7B3LIH
STM32H7B3IIK
STM32H7B3IIT
STM32H7B3AII
STM32H7B3ZIT
STM32H7B3QIY
STM32H7B3VIH
STM32H7B3VIT
STM32H7B3NIH
STM32H7B3IIK
STM32H7B3IIT
STM32H7B3ZIT
STM32H7B3VIH
STM32H7B3VIT
STM32H7B3RIT
HDMI CEC 1
DFSDM
Number of filters for DFSDM1/
DFSDM2
2
8/1 7/1 8/1 7/1
ADCs
8 to 16 bits 2
Number of
channels 24 24 20 (12) 24 18(12) 17(12) 16(12) 20(12) 16(12)
DACs
12 bits 2
Number of
channels 3 (1 single channel + 1 dual-channel interfaces)
Comparators 2 2(2) 2 1
Operational amplifier 2 2(2) 2 1
GPIOs 168 128 119 121 97 87 75 68 166 138 138 112 80 80 49
Wakeup pins 6 4 6 4
Maximum CPU frequency
(MHz) 280
SMPS step-down converter 1 -
USB internal regulator 1 - -
USB separate supply pad 1 -
VDDMMC separate supply pad 1 - 1 -
VREF+ separate pad and
internal buffer 1 1 - 1 -
Operating voltage 1.62 to 3.6 V (13)
Operating temperatures Ambient temperature range: −40 to 85 °C
Junction temperature range: −40 to 130 °C(14)
Packages TFBGA
225
UFBGA
176+25
LQFP
176
UFBGA
169
LQFP
144
WLCSP
132
TFBGA
100
LQFP
100
TFBGA
216
UFBGA
176+25
LQFP
176
LQFP
144
TFBGA
100
LQFP
100
LQFP
64
Bootloader USART, I2C, SPI,
USB-DFU, FDCAN
USART,
I2C, SPI,
USB-DFU
USART,
I2C, SPI,
USB-
DFU,
FDCAN
USART, I2C, SPI, USB-DFU USART, I2C, SPI, USB-DFU,
FDCAN USART, I2C, SPI, USB-DFU
DS13139 - Rev 6 page 9/234
STM32H7B3xI
1. The devices with SMPS correspond to commercial code STM32H7B3xIxxQ.
2. For limitations on peripheral features depending on packages, check the available pins/balls in Table 7. STM32H7B3xI pin/ball definition.
3. To maximize the performance, the I/O high-speed at low-voltage feature (HSLV) must be activated when VDD < 2.7 V. This feature is not available
on all I/Os (see Table 89. OCTOSPI characteristics in SDR mode, and Table 90. OCTOSPI characteristics in DTR mode (with DQS)/Octal and
Hyperbus).
4. The I/O high-speed at low-voltage feature (HSLV) at VDD < 2.7 V is not available for OCTOSPIM_P2.
5. The two OCTOSPIs are available only in Muxed mode.
6. A tamper pin can be configured either as passive or active (not both).
7. SPI1, SPI2, SPI3 and SPI6 interfaces give the flexibility to work in an exclusive way in either SPI mode or I2S audio mode.
8. Dedicated I/O supply pad (VDDMMC) or external level shifter are not supported.
9. The ULPI interface is supported. PC2 and PC3 are available on PC2_C and PC3_C, respectively, by closing the internal analog switch (see
Table 7. STM32H7B3xI pin/ball definition).
10. The ULPI interface is not supported.
11. DCMI and PSSI cannot be used simultaneously since they share the same circuitry.
12. For limitations on fast pads or channels depending on packages, check to the available pins/balls in Table 7. STM32H7B3xI pin/ball definition.
13. VDD/VDDA can drop down to 1.62 V by using an external power supervisor (see Section 3.5.2 Power supply supervisor) and connecting PDR_ON
pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled.
14. The junction temperature is limited to 105 °C in VOS0 voltage range.
DS13139 - Rev 6 page 10/234
STM32H7B3xI
Figure 1. STM32H7B3xI block diagram
TT-FDCAN1
FDCAN2
I2C1/SMBUS
I2C2/SMBUS
I2C3/SMBUS
AXI/AHB12 (280 MHz)
A P B 1 30 MHz
TX, RX
SCL, SDA, SMBAL as AF
APB1 140 MHz (max)
MDMA
PK[7:0]
SCL, SDA, SMBAL as AF
SCL, SDA, SMBAL as AF
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF
TX, RX
RX, TX as AF
RX, TX as AF
RX, TX, SCK
CTS, RTS as AF
RX, TX, SCK, CTS,
RTS as AF
1 channel as AF
smcard
irDA
1 channel as AF
2 channels as AF
4 channels
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
RX, TX as AF
FIFO
LCD-TFT
FIFO
CHROM-ART
(DMA2D)
LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,
LCD_VSYNC, LCD_DE, LCD_CLK
64-bit AXI BUS-MATRIX
HDMI_CEC as AF
SPDIFRX[3:0] as AF
MDC, MDIO
ARM CPU
Cortex-M7
280 MHz AXIM
AHBP
AHBS
TRACECK
TRACED[3:0]
JTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
JTAG/SW
ETM
I-Cache
16KB
D-Cache
16KB
I-TCM
64KB
D-TCM
64KB
16 Streams
FIFO
SDMMC1
SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir
CMD, CMDdir, CK, Ckin,
CKio as AF
FIFO
DMA1
FIFOs
8 Stream
DMA2
FIFOs
BDMA1 8ch
for DFSDM
SDMMC2
FIFO
OTG_FS
FIFO
AHB_SRAM1
64 KB
8 Stream DMA/
PHY
DAC1_OUT2 as AF
16b
AXI/AHB34 (280 MHz)
JPEGWWDG
PA..J[15:0]
HSYNC, VSYNC, PIXCLK, D[13:0]
32-bit AHB BUS-MATRIX
BDMA2
DMA
Mux2
Up to 20 analog inputs
Some inputs are
common to ADC1&2
AHB4
AHB4
AHB4 280 MHz (max)
APB4
VDDA, VSSA
NRESET
WKUP[5:0]
@VDD
RCC
Reset &
Clock
Control
OSC32_IN
OSC32_OUT
VBAT
AWU
VDD12
BBgen + POWER MNGT
LS LS
OSC_IN
OSC_OUT
RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN
VDD
VDDMMC
VSS
VCAP, VDDLDO
VDDSMPS, VSSSMPS
VLXSMPS, VFBSMPS
@VDD
@VDD33
@VSW
AHB4
SUPPLY SUPERVISION
Int
POR
reset
@VDD
WDG_LS_D1
APB4
LPTIM1_IN1, LPTIM1_IN2,
LPTIM2_OUT as AF
OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF
SDMMC_
D[7:0],
CMD, CK as AF
SCL, SDA, SMBAL as AF
COMPx_INP, COMPx_INM,
COMPx_OUT as AF
D-TCM
64KB
AHB/APB
384 KB
AXI_SRAM2
FMC
AHB/APB
16b
APB2 140 MHz (max)
GPIO PORTA.. J
GPIO PORTK
DFSDM2 1ftr
COMP1&2
LPTIM3_OUT as AF LPTIM3
I2C4
SPI6/I2S6
RX, TX, CK, CTS, RTS as AF LPUART1
LPTIM2
Tamper monitor
VREF
SYSCFG
EXTI WKUP
DAP
RNG
DMA
Mux1
To APB1-2
peripherals
AHB_SRAM2
64 KB
AHB/APB
TIM6 16b
TIM7 16b
SWPMI
Digital Temp Sensor
TIM2
32b
TIM3
16b
TIM4
16b
TIM5
32b
TIM12
16b
TIM13
16b
TIM14
16b
USART2
smcard
irDA
USART3
UART4
UART5
UART7
RX, TX as AF
UART8
SPI2/I2S2
SPI3/I2S3
Digital filter
MDIOS
FIFO
10 KB SRAM
RAM
I/F
CRS
SPIF-RX1
HDMI-CEC
LPTIM1
OPAMP1&2
AHB/
APB
LSE XTAL 32 kHz
RTC
Backup registers
HSE XTAL OSC
4 - 48MHz
HSI RC 64MHz
LSI RC 32kHz
PLL1+PLL2+PLL3
POR/PDR/BOR
PVD
Voltage
regulator
3.3 to 1.2V
LSI
HSI
CSI
HSI48
LPTIM2_OUT as AF
AHB1
DP, DM, ID,
VBUS
32 KB
SRD_SRAM 4 KB
BKP_SRAM
AHB4
256 KB
AXI_SRAM1
384 KB
AXI_SRAM3
FMC_signals
OCTOSPI1
OTFDEC1
AHB3 (280 MHz)
APB3 (140 MHz)
1 MB FLASH
1 MB FLASH
AHB4
AHB3
CPU_AHBP
HASH
3DES/AES
PDCK, DE, RDY, D[15:0] PSSI
DCMI
HSEM
AHB4 (280 MHz)
AHB2
Up to 20 analog inputs
IWDG
DAC2
DAC2_OUT1 as AF
DFSDM_CKOUT,
DFSDM_DATAIN[1:0],
DFSDM_CKIN[1:0]
DAC
DAC1 DAC DAC1_OUT1 as AF
CSI RC 4MHz
HSI48 RC 48MHz
APB4 140 MHz (max)
AHB4 280 MHz (max)
ADC1
ADC2
SD, SCK, FS, MCLK, PDM_D[3:1],
PDM_CK[2:1] as AF
FIFO
SAI1/PDM
SD, SCK, FS, MCLK, AF
FIFO
SAI2
RX, TX as AF UART9
irDA USART1
smcard
smcard
RX, TX, SCK, CTS, RTS as AF irDA USART6
DFSDM_CKOUT,
DFSDM_DATAIN[7:0],
DFSDM_CKIN[7:0] DFSDM1 8ftrs
SPI/I2S1
SPI4
MOSI, MISO, SCK, NSS as AF SPI5
1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF TIM17
1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF TIM16
2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF TIM15
smcard
RX, TX, SCK, CTS, RTS as AF irDA USART10
RX, TX, SCK, CTS, RTS as AF
4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF TIM1/PWM
TIM8/PWM 16b
4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF
CRC
AHB3 (280 MHz)
DB-SDMMC1
DB-OCTOSPI1
DB-OCTOSPI2
MCO1
MCO2
AHB4 280 MHz (max)
DB-SDMMC2
16b
16b
16b
16b
16b
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF
MOSI, MISO, SCK, NSS as AF
SMPS
Step-down
converter
USB regulator VDD50USB
VDD33USB
Vref internal
VREF+
Vbat charging
VDD
SYNC
Analog Temp Sensor
Temp
Monitor
PWRCTRL
OCTOSPIM
OCTOSPI2
OTFDEC2
OCTOSPI1_signals
OCTOSPI2_signals
AHB2 280 MHz (max)
AHB2 (280 MHz)
AHB1 (280 MHz)
32-bit AHB BUS-MATRIX
AHB1 280 MHz (max)
AHB1 280 MHz (max)
STM32H7B3xI
DS13139 - Rev 6 page 11/234
3Functional overview
3.1 Arm® Cortex®-M7 with FPU
The Arm® Cortex®-M7 with double-precision FPU processor is the latest generation of Arm processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and optimized power consumption, while delivering outstanding
computational performance and low interrupt latency.
The Cortex®-M7 processor is a highly efficient high-performance featuring:
Six-stage dual-issue pipeline
Dynamic branch prediction
Harvard architecture with L1 caches (16 Kbytes of I-cache and 16 Kbytes of D-cache)
64-bit AXI4 interface
64-bit ITCM interface
2x32-bit DTCM interfaces
The following memory interfaces are supported:
Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency
Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM accesses
AXI Bus interface to optimize Burst transfers
Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals.
The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm
execution.
It also supports single and double precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
Refer to Figure 1. STM32H7B3xI block diagram for the general block diagram of the STM32H7B3xI family.
Note: Cortex®-M7 with FPU core is binary compatible with the Cortex®-M4 core.
3.2 Memory protection unit (MPU)
The memory protection unit (MPU) manages the CPU access rights and the attributes of the system resources. It
has to be programmed and enabled before use. Its main purposes are to prevent an untrusted user program to
accidentally corrupt data used by the OS and/or by a privileged task, but also to protect data processes or read-
protect memory regions.
The MPU defines access rules for privileged accesses and user program accesses. It allows defining up to 16
protected regions that can in turn be divided into up to 8 independent subregions, where region address, size, and
attributes can be configured. The protection area ranges from 32 bytes to 4 Gbytes of addressable memory.
When an unauthorized access is performed, a memory management exception is generated.
3.3 Memories
3.3.1 Embedded Flash memory
The STM32H7B3xI devices embed up to 2 Mbytes of Flash memory that can be used for storing programs and
data.
The Flash memory is organized as 137-bit Flash words memory that can be used for storing both code and data
constants. Each word consists of:
One Flash word (4 words, 16 bytes or 128 bits)
9 ECC bits.
STM32H7B3xI
Functional overview
DS13139 - Rev 6 page 12/234
The Flash memory is organized as follows:
Two independent 1 Mbyte banks of user Flash memory, each one containing 128 user sectors of 8 Kbytes
each.
128 Kbytes of System Flash memory from which the device can boot.
1 Kbyte of OTP (one-time programmable) memory containing option bytes for user configuration.
3.3.2 Secure access mode
In addition to other typical memory protection mechanism (RDP, PCROP), STM32H7B3xI devices embed the
Secure access mode, an enhanced security feature. This mode allows developing user-defined secure services
by ensuring, on the one hand code and data protection and on the other hand code safe execution.
Two types of secure services are available:
STMicroelectronics Root Secure Services:
These services are embedded in System memory. They provide a secure solution for firmware and third-party
modules installation. These services rely on cryptographic algorithms based on a device unique private key.
User-defined secure services:
These services are embedded in user Flash memory. Examples of user secure services are proprietary user
firmware update solution, secure Flash integrity check or any other sensitive applications that require a high level
of protection.
The secure firmware is embedded in specific user Flash memory areas configured through option bytes.
Secure services are executed just after a reset and preempt all other applications to guarantee protected and safe
execution. Once executed, the corresponding code and data are no more accessible.
The above secure services are available only for Cortex®-M7 core operating in Secure access mode. The other
masters cannot access the option bytes involved in Secure access mode settings or the Flash secured areas.
3.3.3 Embedded SRAM
All devices feature:
1 Mbyte of AXI-SRAM mapped onto AXI bus matrix in CPU domain (CD) split into:
AXI-SRAM1: 256 Kbytes
AXI-SRAM2: 384 Kbytes
AXI-SRAM3: 384 Kbytes
128 Kbytes of AHB-RAM mapped onto AHB bus matrix in CPU domain (CD) split into:
AHB-SRAM1: 64 Kbytes
AHB-SRAM2: 64 Kbytes
32 Kbytes of SRD-SRAM mapped in Smart Run Domain (SRD)
4 Kbytes of backup SRAM
The content of this area is protected against possible unwanted write accesses, and is retained in Standby or
VBAT mode.
RAM mapped to TCM interface (ITCM and DTCM):
Both ITCM and DTCM RAMs are 0 wait state memories that are accessible from the CPU or the MDMA (even in
Sleep mode) through a specific AHB slave of the CPU(AHBP).
64 Kbytes of ITCM-RAM (instruction RAM)
This RAM is connected to ITCM 64-bit interface designed for execution of critical real-times routines by the CPU.
128 Kbytes of DTCM-RAM (2x 64 Kbyte DTCM-RAMs on 2x32-bit DTCM ports)
The DTCM-RAM could be used for critical real-time data, such as interrupt service routines or stack/heap
memory. Both DTCM-RAMs can be used in parallel (for load/store operations) thanks to the Cortex®-M7 dual
issue capability.
STM32H7B3xI
Memories
DS13139 - Rev 6 page 13/234
3.4 Boot modes
At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option bytes, allowing to
program any boot memory address from 0x0000 0000 to 0x3FFF FFFF which includes:
All Flash address space
All RAM address space: ITCM, DTCM RAMs and SRAMs
The system memory bootloader
The boot loader is located in non-user System memory. It is used to reprogram the Flash memory through a serial
interface (USART, I2C, SPI, USB-DFU, FDCAN). Refer to STM32 microcontroller system memory boot mode
application note (AN2606) for details.
3.5 Power supply management
3.5.1 Power supply scheme
VDD = 1.62 to 3.6 V: external power supply for I/Os, provided externally through VDD pins.
VDDLDO = 1.62 to 3.6 V: supply voltage for the internal regulator supplying VCORE
VDDA = 1.62 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL.
VDD33USB and VDD50USB:
VDD50USB can be supplied through the USB cable to generate the VDD33USB via the USB internal regulator. This
allows supporting a VDD supply different from 3.3 V.
The USB regulator can be bypassed to supply directly VDD33USB if VDD = 3.3 V.
VDDMMC = 1.62 to 3.6 V external power supply for independent I/Os. VDDMMC can be higher than VDD.
VDDMMC pin should be tied to VDD when it is not used.
VBAT = 1.2 to 3.6 V: power supply for the VSW domain when VDD is not present.
VCAP: VCORE supply, which value depends on voltage scaling (0.74 V, 0.9 V, 1.0 V, 1.1 V, 1.2 V or 1.3 V). It
is configured through VOS bits in PWR_CR3 register. The VCORE domain is split into two domains the CPU
domain (CD) and the Smart Run Domain (SRD).
CD domain containing most of the peripherals and the Arm® Cortex®-M7 core
SRD domain containing some peripherals and the system control.
VDDSMPS = 1.62 to 3.6 V: step-down converter power supply
VLXSMPS = VCORE or 1.8 to 2.5 V: external regulated step-down converter output
VFBSMPS = VCORE or 1.8 to 2.5 V: external step-down converter feedback voltage sense input
Note: For I/O speed optimization at low VDD supply, refer to Section 3.8 General-purpose input/outputs (GPIOs).
The features available on the device depend on the package (refer to Table 1. STM32H7B3xI features and
peripheral counts).
During power-up and power-down phases, the following power sequence requirements must be respected (see
Figure 2. Power-up/power-down sequence):
When VDD is below 1 V, other power supplies (VDDA, VDD33USB and VDD50USB) must remain below VDD +
300 mV.
When VDD is above 1 V, all power supplies are independent (except for VDDSMPS, which must remain at the
same level as VDD).
During the power-down phase, VDD can temporarily become lower than other supplies only if the energy provided
to the microcontroller remains below 1 mJ. This allows external decoupling capacitors to be discharged with
different time constants during the power-down transient phase.
STM32H7B3xI
Boot modes
DS13139 - Rev 6 page 14/234
Figure 2. Power-up/power-down sequence
0.3
1
VPDR
3.6
Operating modePower-on Power-down time
V
VDDX(1)
VDD
Invalid supply area VDDX < VDD + 300 mV VDDX independent from VDD
VPOR
1. VDDx refers to any power supply among VDDA, VDD33USB and VDD50USB.
2. VDD and VDDSMPS must be wired together into order to follow the same voltage sequence.
3.5.2 Power supply supervisor
The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a
Brownout reset (BOR) circuitry:
Power-on reset (POR)
The POR supervisor monitors VDD power supply and compares it to a fixed threshold. The devices remain in
reset mode when VDD is below this threshold,
Power-down reset (PDR)
The PDR supervisor monitors VDD power supply. A reset is generated when VDD drops below a fixed
threshold.
The PDR supervisor can be enabled/disabled through PDR_ON pin.
Brownout reset (BOR)
The BOR supervisor monitors VDD power supply. Three BOR thresholds (from 2.1 to 2.7 V) can be
configured through option bytes. A reset is generated when VDD drops below this threshold.
Programmable voltage detector (PVD)
The PVD monitors the VDD power supply by comparing it with a threshold selected from a set of predefined
values.
It can also monitor the voltage level of the PVD_IN pin by comparing it with an internal VREFINT voltage
reference level.
Analog voltage detector (AVD)
The AVD monitors the VDDA power supply by comparing it with a threshold selected from a set of predefined
values.
VBAT threshold
The VBAT battery voltage level can be monitored by comparing it with two thresholds levels.
Temperature threshold
A dedicated temperature sensor monitors the junction temperature and compare it with two threshold levels.
STM32H7B3xI
Power supply management
DS13139 - Rev 6 page 15/234
3.5.3 Voltage regulator
The same voltage regulator supplies the two power domains (CD and SRD). The CD domain can be
independently switched off.
Voltage regulator output can be adjusted according to application needs through six power supply levels:
Run mode (VOS0 to VOS3)
Scale 0 and scale 1: high performance
Scale 2: medium performance and consumption
Scale 3: optimized performance and low-power consumption
Stop mode (SVOS3 to SVOS5)
Scale 3: peripheral with wakeup from stop mode capabilities (UART, SPI, I2C, LPTIM) are operational
Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled
The peripheral functionality is disabled but wakeup from Stop mode is possible through GPIO or
asynchronous interrupt.
3.5.4 SMPS step-down converter
The built-in SMPS step-down converter is a highly power-efficient DC/DC non-linear switching regulator that
provides lower power consumption than a conventional voltage regulator (LDO).
The step-down converter can be used to:
Directly supply the VCORE domain
the SMPS step-down converter operating modes follow the device system operating modes (Run,
Stop, Standby).
the SMPS step-down converter output voltage are set according to the selected VOS and SVOS bits
(voltage scaling)
Provide intermediate voltage level to supply the internal voltage regulator (LDO)
The SMPS step-down converter operating modes follow the device system operating modes (Run,
Stop, Standby).
The SMPS step-down converter output equals 1.8 V or 2.5 V according to the selected step-down level
Provide an external supply
The SMPS step-down converter is forced to external operating mode
The SMPS step-down converter output equals 1.8 V or 2.5 V according to the selected step-down level
The 1.8 V or 2.5 V SMPS step-down converter output voltage imposes a minimum VDDSMPS supply of 2.5 V or
3.3 V, respectively. It defines indirectly the minimum VDD supply and I/O level.
3.6 Low-power modes
There are several ways to reduce power consumption on STM32H7B3xI:
Decrease dynamic power consumption by slowing down the system clocks even in Run mode and
individually clock gating the peripherals that are not used.
Save power consumption when the CPU is idle, by selecting among the available low-power mode
according to the user application needs. This allows achieving the best compromise between short startup
time, low-power consumption, as well as available wakeup sources.
The devices feature several low-power modes:
System Run with CSleep (CPU clock stopped)
Autonomous with CD domain in DStop (CPU and CPU Domain bus matrix clocks stopped)
Autonomous with CD domain in DStop2 (CPU and CPU Domain bus matrix clocks stopped, CPU domain in
retention mode)
System Stop (SRD domain clocks stopped) and CD domain in DStop (CPU and CPU Domain bus matrix
clocks stopped)
System Stop (SRD domain clocks stopped) and CD domain in DStop2 (CPU and CPU Domain bus matrix
clocks stopped, CPU domain in retention mode)
Standby (System, CD and SRD domains powered down)
STM32H7B3xI
Low-power modes
DS13139 - Rev 6 page 16/234
CSleep and CStop low-power modes are entered by the MCU when executing the WFI (Wait for Interrupt) or WFE
(Wait for Event) instructions, or when the SLEEPONEXIT bit of the Cortex®-M7 core is set after returning from an
interrupt service routine.
The CPU domain can enter low-power mode (DStop or DStop2) when the processor, its subsystem and the
peripherals allocated in the domain enter low-power mode.
If part of the domain is not in low-power mode, the domain remains in the current mode.
Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared and the power domains
are in DStop or DStop2 mode.
Table 2. System vs domain low-power mode
System power mode CD domain power mode SRD domain power mode
Run DRun/DStop/DStop2 DRun
Stop DStop/DStop2 DStop
Standby Standby Standby
Some GPIO pins can be used to monitor CPU and domain power states:
Table 3. Overview of low-power mode monitoring pins
Power state monitoring pins Description
PWR_CSLEEP CPU clock OFF
PWR_CSTOP CPU domain in low-power mode
PWR_NDSTOP2 CPU domain retention mode selection
3.7 Reset and clock controller (RCC)
The clock and reset controller is located in the SRD domain. The RCC manages the generation of all the clocks,
as well as the clock gating and the control of the system and peripheral resets. It provides a high flexibility in the
choice of clock sources and allows to apply clock ratios to improve the power consumption. In addition, on some
communication peripherals that are capable to work with two different clock domains (either a bus interface clock
or a kernel peripheral clock), the system frequency can be changed without modifying the baud rate.
3.7.1 Clock management
The devices embed four internal oscillators, two oscillators with external crystal or resonator, two internal
oscillators with fast startup time and three PLLs.
The RCC receives the following clock source inputs:
Internal oscillators:
64 MHz HSI clock (1% accuracy)
48 MHz RC oscillator
4 MHz CSI clock
32 kHz LSI clock
External oscillators:
4-50 MHz HSE clock
32.768 kHz LSE clock
The RCC provides three PLLs: one for system clock, two for kernel clocks.
The system starts on the HSI clock. The user application can then select the clock configuration.
A high precision can be achieved for the 48 MHz clock by using the embedded clock recovery system (CRS). It
uses the USB SOF signal, the LSE or an external signal (SYNC) to fine tune the oscillator frequency on-the- fly.
STM32H7B3xI
Reset and clock controller (RCC)
DS13139 - Rev 6 page 17/234
3.7.2 System reset sources
Power-on reset initializes all registers while system reset reinitializes the system except for the debug, part of the
RCC and power controller status registers, as well as the backup power domain.
A system reset is generated in the following cases:
Power-on reset (pwr_por_rst)
Brownout reset
Low level on NRST pin (external reset)
Window watchdog
Independent watchdog
Software reset
Low-power mode security reset
Exit from Standby
3.8 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or
pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have
speed selection to better manage internal noise, power consumption and electromagnetic emission.
After reset, all GPIOs are in Analog mode to reduce power consumption.
The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing
to the I/Os registers.
To maximize the performance, the I/O high-speed feature, HSLV, must be activated at low device supply voltage.
This is needed to achieve the performance required for peripherals such as the SDMMC, FMC and OCTOSPI.
The GPIOs are divided into four groups which can be optimized separately (refer to the description of HSLVx bits
of SYSCFG_CCCSR register in RM0455).
The I/O high-speed feature must be used only when VDD is lower than 2.7 V, and both the HSLV user option bits
(VDDIO_HSLV and VDDMMC_HSLV) and HSLVx bits must be set to enable it (refer to RM0455 for details).
STM32H7B3xI
General-purpose input/outputs (GPIOs)
DS13139 - Rev 6 page 18/234
3.9 Bus-interconnect matrix
The devices feature an AXI bus matrix, two AHB bus matrices and bus bridges that allow interconnecting bus masters with bus slaves (see
Figure 3. STM32H7B3xI bus matrix).
Figure 3. STM32H7B3xI bus matrix
AXIM
APB1
SDMMC1 MDMA DMA2D LTDC
APB4
Cortex-M7
I$
16KB D$
16KB
AHBP
DMA1_MEM
DMA1_PERIPH
DMA2_MEM
DMA2_PERIPH
APB3
32-bit AHB bus matrix
CD domain
64-bit AXI bus matrix
CD domain
32-bit AHB bus matrix
SRD domain
DTCM
128 Kbytes
ITCM
64 Kbytes
Flash Bank 1
1 Mbyte
Flash Bank 2
1 Mbyte
FMC
AHB SRAM1
64 Kbytes
AHB1
AHB2
AHB4
SRD SRAM
32 Kbytes
Backup
SRAM
4 Kbytes
AHBS
CPU
AXI to AHB
CD-to-SRD AHB
32-bit bus
64-bit bus
Bus multiplexer
Legend
Master interface
Slave interface
AHB3
AXI
AHB
APB
APB2
TCM
AXI SRAM3
384 Kbytes
AXI SRAM2
384 Kbytes
AXI SRAM1
256 Kbytes
OTFDEC1 OCTOSPI1
FLIFT
GFX-MMU
DMA2 SDMMC2DMA1 USBHS1 BDMA1
AHB SRAM2 64
Kbytes
BDMA2
OTFDEC2 OCTOSPI2
DS13139 - Rev 6 page 19/234
STM32H7B3xI
Bus-interconnect matrix
3.10 DMA controllers
The devices feature five DMA instances to unload CPU activity:
A master direct memory access (MDMA)
The MDMA is a high-speed DMA controller, which is in charge of all types of memory transfers (peripheral to
memory, memory to memory, memory to peripheral), without any CPU action. It features a master AXI interface
and a dedicated AHB interface to access Cortex®-M7 TCM memories.
The MDMA is located in the CD domain. It is able to interface with the other DMA controllers located in this
domain to extend the standard DMA capabilities, or can manage peripheral DMA requests directly.
Each of the 16 channels can perform single block transfers, repeated block transfers and linked list transfers.
Two dual-port DMAs (DMA1, DMA2) located in the CD domain and connected to the AHB matrix, with FIFO
and request router capabilities.
One basic DMA (BDMA1) located in the CD domain and connected to the AHB matrix. This DMA is
dedicated to the DFSDM (see Section 3.26 Digital filter for sigma-delta modulators (DFSDM))
One basic DMA (BDMA2) located in the SRD domain, with request router capabilities.
The DMA request router could be considered as an extension of the DMA controller. It routes the DMA peripheral
requests to the DMA controller itself. This allowing managing the DMA requests with a high flexibility, maximizing
the number of DMA requests that run concurrently, as well as generating DMA requests from peripheral output
trigger or DMA event.
3.11 Chrom-ART Accelerator (DMA2D)
The Chrom-Art Accelerator (DMA2D) is a graphical accelerator which offers advanced bit blitting, row data copy
and pixel format conversion. It supports the following functions:
Rectangle filling with a fixed color
Rectangle copy
Rectangle copy with pixel format conversion
Rectangle composition with blending and pixel format conversion
Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds
dedicated memory to store color lookup tables. The DMA2D also supports block based YCbCr to handle JPEG
decoder output.
An interrupt can be generated when an operation is complete or at a programmed watermark.
All the operations are fully automatized and are running independently from the CPU or the DMAs.
3.12 Chrom-GRC™ (GFXMMU)
The Chrom-GRC is a graphical oriented memory management unit aimed at:
Optimizing memory usage according to the display shape
Manage cache linear accesses to the frame buffer
Prefetch data
The display shape is programmable to store only the visible image pixels.
A virtual memory space is provided which is seen by all system masters and can be physically mapped to any
system memory.
An interrupt can be generated in case of buffer overflow or memory transfer error.
3.13 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller which is able to manage 16 priority levels, and handle
up to 150 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-M7 with FPU core.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
STM32H7B3xI
DMA controllers
DS13139 - Rev 6 page 20/234
Support tail chaining
Processor context automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt latency.
3.14 Extended interrupt and event controller (EXTI)
The EXTI controller performs interrupt and event management. In addition, it can wake up the processor, power
domains and/or SRD domain from Stop mode.
The EXTI handles up to 89 independent event/interrupt lines split into 28 configurable events and 61 direct
events.
Configurable events have dedicated pending flags, active edge selection, and software trigger capable.
Direct events provide interrupts or events from peripherals having a status flag.
3.15 Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a programmable polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the
scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC
calculation unit helps compute a signature of the software during runtime, to be compared with a reference
signature generated at link-time and stored at a given memory location.
3.16 Flexible memory controller (FMC)
The FMC controller main features are the following:
Interface with static-memory mapped devices including:
Static random access memory (SRAM)
NOR Flash memory/OneNAND Flash memory
PSRAM (4 memory banks)
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
8-,16-,32-bit data bus width
Independent Chip Select control for each memory bank
Independent configuration for each memory bank
Write FIFO
Read FIFO for SDRAM controller
The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is the FMC kernel clock
divided by 2.
3.17 Octo-SPI memory interface (OCTOSPI)
The OCTOSPI is a specialized communication interface targeting single, dual, quad or octal SPI memories.
The STM32H7B3xI embeds two separate Octo-SPI interfaces.
Each OCTOSPI instance supports single/dual/quad/octal SPI formats.
Multiplex of single/dual/quad/octal SPI over the same bus can be achieved using the integrated I/O manager.
The OCTOSPI can operate in any of the three following modes:
Indirect mode: all the operations are performed using the OCTOSPI registers
Status-polling mode: the external memory status register is periodically read and an interrupt can be
generated in case of flag setting
Memory-mapped mode: the external memory is memory mapped and it is seen by the system as if it was an
internal memory supporting both read and write operations.
STM32H7B3xI
Extended interrupt and event controller (EXTI)
DS13139 - Rev 6 page 21/234
The OCTOSPI support two frame formats supported by most external serial memories such as serial PSRAMs,
serial NOR Flash memories, Hyper RAMs and Hyper Flash memories:
The classical frame format with the command, address, alternate byte, dummy cycles and data phase
The HyperBus frame format.
Multichip package (MCP) combining any of the above mentioned memory types can also be supported.
3.18 Analog-to-digital converters (ADCs)
The STM32H7B3xI devices embed two analog-to-digital converters, whose resolution can be configured to 16,
14, 12, 10 or 8 bits. Each ADC shares up to 24 external channels, performing conversions in the single-shot or
scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
The ADC can be served by the DMA controller, thus allowing to automatically transfer ADC converted values to a
destination location without any software action.
In addition, an analog watchdog feature can accurately monitor the converted voltage of one, some or all selected
channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM6,
TIM8, TIM15, and LPTIM1 timers.
3.19 Analog temperature sensor
The STM32H7B3xI embeds an analog temperature sensor that generates a voltage (VTS) that varies linearly with
the temperature. This temperature sensor is internally connected to ADC2_IN18. The conversion range is
between 1.7 V and 3.6 V. It can measure the device junction temperature ranging from −40 to +125 °C.
The temperature sensor have a good linearity, but it has to be calibrated to obtain a good overall accuracy of the
temperature measurement. As the temperature sensor offset varies from chip to chip due to process variation, the
uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To
improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by
ST. The temperature sensor factory calibration data are stored by ST in the System memory area, which is
accessible in read-only mode.
3.20 Digital temperature sensor (DTS)
The STM32H7B3xI embeds a sensor that converts the temperature into a square wave which frequency is
proportional to the temperature. The PCLK or the LSE clock can be used as reference clock for the
measurements. A formula given in the product reference manual (RM0455) allows to calculate the temperature
according to the measured frequency stored in the DTS_DR register.
3.21 VBAT operation
The VBAT power domain contains the RTC, the backup registers and the backup SRAM.
To optimize battery duration, this power domain is supplied by VDD when available or by the voltage applied on
VBAT pin (when VDD supply is not present). VBAT power is switched when the PDR detects that VDD dropped
below the PDR level.
The voltage on the VBAT pin could be provided by an external battery, a supercapacitor or directly by VDD, in
which case, the VDD mode is not functional.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
The devices embed an internal VBAT battery charging circuitry that can be activated when VDD is present.
STM32H7B3xI
Analog-to-digital converters (ADCs)
DS13139 - Rev 6 page 22/234
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from
VBAT operation.
When PDR_ON pin is connected to VSS (Internal Reset OFF), the VBAT functionality is no more available and
VBAT pin should be connected to VDD.
3.22 Digital-to-analog converters (DAC)
The devices features one dual-channel DAC (DAC1), located in the CD domain, plus one single-channel DAC
(DAC2), located in the SRD domain.
The three 12-bit buffered DAC channels can be used to convert three digital signals into three analog voltage
signal outputs.
The following feature are supported:
three DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
Triple DAC channel independent or simultaneous conversions
DMA capability for each channel including DMA underrun error detection
external triggers for conversion
input voltage reference VREF+ or internal VREFBUF reference.
The DAC channels are triggered through the timer update outputs that are also connected to different DMA
streams.
3.23 Voltage reference buffer (VREFBUF)
The built-in voltage reference buffer can be used as voltage reference for ADCs and DACs, as well as voltage
reference for external components through the VREF+ pin.
Five different voltages are supported (refer to the reference manual for details).
3.24 Ultra-low-power comparators (COMP)
The STM32H7B3xI devices embed two rail-to-rail comparators (COMP1 and COMP2). They feature
programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) as well as
selectable output polarity.
The reference voltage can be one of the following:
An external I/O
A DAC output channel
An internal reference voltage or submultiple (1/4, 1/2, 3/4)
The analog temperature sensor
The VBAT/4 supply.
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers, and be combined
into a window comparator.
3.25 Operational amplifiers (OPAMP)
The STM32H7B3xI devices embed two rail-to-rail operational amplifiers (OPAMP1 and OPAMP2) with external or
internal follower routing and PGA capability, and two inputs and one output each. These three I/Os can be
connected to the external pins, thus enabling any type of external interconnections. The operational amplifiers can
be configured internally as a follower, as an amplifier with a non-inverting gain ranging from 2 to 16 or with
inverting gain ranging from -1 to -15.
The operational amplifier main features are:
PGA with a non-inverting gain ranging of 2, 4, 8 or 16 or inverting gain ranging of -1, -3, -7 or -15
STM32H7B3xI
Digital-to-analog converters (DAC)
DS13139 - Rev 6 page 23/234
Up to two positive inputs connected to DAC
Output connected to internal ADC
Low input bias current down to 1 nA
Low input offset voltage down to 1.5 mV
Gain bandwidth up to 8 MHz
The devices embed two operational amplifiers (OPMAP1 and OPAMP2) with two inputs and one output each.
These three I/Os can be connected to the external pins, thus enabling any type of external interconnections. The
operational amplifiers can be configured internally as a follower, as an amplifier with a non-inverting gain ranging
from 2 to 16 or with inverting gain ranging from -1 to -15.
3.26 Digital filter for sigma-delta modulators (DFSDM)
The device embeds two DFSDM interfaces:
DSFDM1
It is located in the CD domain and features eight external digital serial interfaces (channels) and eight digital
filters, or alternately eight internal parallel inputs.
DSFDM2
It is located in the SRD domain. DFSDM2 is a lite version including two external digital serial interfaces
(channels) and one digital filters.
The DFSDM peripherals interface the external Σ∆ modulators to microcontroller and then perform digital filtering
of the received data streams (which represent analog value on Σ∆ modulators inputs). DFSDMs can also interface
PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in hardware.
The DFSDMs feature optional parallel data stream inputs from internal ADC peripherals or microcontroller
memory (through DMA/CPU transfers into DFSDM).
DFSDM transceivers support several serial interface formats (to support various Σ∆ modulators). DFSDM digital
filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC
resolution.
The DFSDM peripherals support:
Multiplexed input digital serial channels:
configurable SPI interface to connect various SD modulator(s)
configurable Manchester coded 1 wire interface support
PDM (Pulse Density Modulation) microphone input support
maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
clock output for SD modulator(s): 0..20 MHz
Alternative inputs from eight internal digital parallel channels (up to 16 bit input resolution):
internal sources: ADC data or memory data streams (DMA)
Digital filter modules with adjustable digital signal processing:
Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
integrator: oversampling ratio (1..256)
Up to 24-bit output data resolution, signed output data format
Automatic data offset correction (offset stored in register by user)
Continuous or single conversion
Start-of-conversion triggered by:
software trigger
internal timers
external events
start-of-conversion synchronously with first digital filter module (DFSDM0)
STM32H7B3xI
Digital filter for sigma-delta modulators (DFSDM)
DS13139 - Rev 6 page 24/234
Analog watchdog feature:
low value and high value data threshold registers
dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
input from final output data or from selected input digital serial channels
continuous monitoring independently from standard conversion
Short circuit detector to detect saturated analog input values (bottom and top range):
up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream
monitoring continuously each input serial channel
Break signal generation on analog watchdog event or on short circuit detector event
Extremes detector:
storage of minimum and maximum values of final conversion data
refreshed by software
DMA capability to read the final conversion data
Interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence
“Regular” or “injected” conversions:
“regular” conversions can be requested at any time or even in continuous mode without having any
impact on the timing of “injected” conversions
“injected” conversions for precise timing and with high conversion priority
3.27 Digital camera interface (DCMI)
The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-
bit to 14-bit parallel interface, to receive video data. The camera interface can achieve a data transfer rate up to
140 Mbyte/s using a 80 MHz pixel clock. It features:
Programmable polarity for the input pixel clock and synchronization signals
Parallel data communication can be 8-, 10-, 12- or 14-bit
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB
565 progressive video or compressed data (like JPEG)
Supports continuous mode or snapshot (a single frame) mode
Capability to automatically crop the image
3.28 Parallel synchronous slave interface (PSSI)
The PSSI is a generic synchronous 8-/16-bit parallel data input/output slave interface. It allows the transmitter to
send a data valid signal to indicate when the data is valid, and the receiver to output a flow control signal to
indicate when it is ready to sample the data.
The PSSI main features are:
Slave mode operation
8- or 16-bit parallel data input or output
8-word (32-byte) FIFO
Data enable (DE) alternate function input and Ready (RDY) alternate function output.
When enabled, these signals can either allow the transmitter to indicate when the data is valid or the receiver to
indicate when it is ready to sample the data, or both.
The PSSI shares most of the circuitry with the digital camera interface (DCMI). It thus cannot be used
simultaneously with the DCMI.
3.29 LCD-TFT display controller (LTDC)
The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals
to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following
features:
2 display layers with dedicated FIFO (64x32-bit)
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
STM32H7B3xI
Digital camera interface (DCMI)
DS13139 - Rev 6 page 25/234
Up to 8 input color formats selectable per layer
Flexible blending between two layers using alpha value (per pixel or constant)
Flexible programmable parameters for each layer
Color keying (transparency color)
Up to 4 programmable interrupt events
AXI master interface with burst of 16 words
3.30 JPEG codec (JPEG)
The JPEG codec can encode and decode a JPEG stream as defined in the
ISO/IEC10918-1 specification. It provides an fast and simple hardware compressor and decompressor of JPEG
images with full management of JPEG headers.
The JPEG codec main features are as follows:
8-bit/channel pixel depths
Single clock per pixel encoding and decoding
Support for JPEG header generation and parsing
Up to four programmable quantization tables
Fully programmable Huffman tables (two AC and two DC)
Fully programmable minimum coded unit (MCU)
Encode/decode support (non simultaneous)
Single clock Huffman coding and decoding
Two-channel interface: Pixel/Compress In, Pixel/Compressed Out
Stallable design
Support for single greyscale component
Ability to enable/disable header processing
Internal register interface
Fully synchronous design
Configuration for high-speed decode mode
3.31 True random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit. The
RNG is a true random number generator that provides full entropy outputs to the application as 32-bit samples. It
is composed of a live entropy source (analog) and an internal conditioning component.
3.32 Cryptographic acceleration (CRYP and HASH)
The devices embed a cryptographic processor that supports the advanced cryptographic algorithms usually
required to ensure confidentiality, authentication, data integrity and non-repudiation when exchanging messages
with a peer:
Encryption/Decryption
DES/TDES (data encryption standard/triple data encryption standard): ECB (electronic codebook) and
CBC (cipher block chaining) chaining algorithms, 64-, 128- or 192-bit key
AES (advanced encryption standard): ECB, CBC, GCM, CCM, and CTR (counter mode) chaining
algorithms, 128, 192 or 256-bit key
Universal HASH
SHA-1 and SHA-2 (secure HASH algorithms)
MD5
HMAC
The cryptographic accelerator supports DMA request generation.
STM32H7B3xI
JPEG codec (JPEG)
DS13139 - Rev 6 page 26/234
3.33 On-the-fly decryption engine (OTFDEC)
The embedded OTFDEC decrypts in real-time the encrypted content stored in the external Octo-SPI memories
used in Memory-mapped mode.
The OTFDEC uses the AES-128 algorithm in counter mode (CTR).
Code execution on external Octo-SPI memories can be protected against fault injection thanks to
STMicroelectronics enhanced encryption mode (refer to RM0455 for details).
The OTFDEC main features are as follow:
On-the-fly 128-bit decryption during STM32 Octo-SPI read operations (single or multiple).
AES-CTR algorithm with keystream FIFO (depth= 4)
Support for any read size
Up to four independent encrypted regions
Region definition granularity: 4096 bytes
Region configuration write locking mechanism
Two optional decryption modes: execute-only and execute-never
128-bit key for each region, two-byte firmware version, and eight-byte application-defined nonce
Encryption keys confidentiality and integrity protection
Write only registers with software locking mechanism
Availability of 8-bit CRC as public key information
Support for STM32 Octo-SPI prefetching mechanism.
Encryption mode
3.34 Timers and watchdogs
The devices include two advanced-control timers, ten general-purpose timers, two basic timers, three low-power
timers, two watchdogs and a SysTick timer.
All timer counters can be frozen in Debug mode.
Table 4. Timer feature comparison compares the features of the advanced-control, general-purpose and basic
timers.
STM32H7B3xI
On-the-fly decryption engine (OTFDEC)
DS13139 - Rev 6 page 27/234
Table 4. Timer feature comparison
Timer type Timer Counter
resolution
Counter
type Prescaler factor
DMA
request
generation
Capture/
compare
channels
Comple-
mentary
output
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)
(1)
Advanced-
control
TIM1,
TIM8 16-bit Up, Down,
Up/down
Any integer
between 1 and
65536
Yes 4 Yes 140 280
General
purpose
TIM2,
TIM5 32-bit Up, Down,
Up/down
Any integer
between 1 and
65536
Yes 4 No 140 280
TIM3,
TIM4 16-bit Up, Down,
Up/down
Any integer
between 1 and
65536
Yes 4 No 140 280
TIM12 16-bit Up
Any integer
between 1 and
65536
No 2 No 140 280
TIM13,
TIM14 16-bit Up
Any integer
between 1 and
65536
No 1 No 140 280
TIM15 16-bit Up
Any integer
between 1 and
65536
Yes 2 1 140 280
TIM16,
TIM17 16-bit Up
Any integer
between 1 and
65536
Yes 1 1 140 280
Basic TIM6,
TIM7 16-bit Up
Any integer
between 1 and
65536
Yes 0 No 140 280
Low-power
timer
LPTIM1,
LPTIM2,
LPTIM3
16-bit Up 1, 2, 4, 8, 16, 32,
64, 128 No 0 No 140 280
1. The maximum timer clock is up to 280 MHz depending on TIMPRE bit in the RCC_CFGR register and
CDPRE1/2 bits in RCC_CDCFGR register.
3.34.1 Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6
channels. They have complementary PWM outputs with programmable inserted dead times. They can also be
considered as complete general-purpose timers. Their 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If
configured as 16-bit PWM generators, they have full modulation capability (0-100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization
or event chaining.
The advanced-control timers support independent DMA request generation.
3.34.2 General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32H7B3xI devices (see
Table 4. Timer feature comparison for differences).
STM32H7B3xI
Timers and watchdogs
DS13139 - Rev 6 page 28/234
TIM2, TIM3, TIM4 and TIM5
The devices include 4 full-featured general-purpose timers: TIM2, TIM3, TIM4 and TIM5. TIM2 and TIM5 are
based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler while TIM3 and TIM4 are based on a
16-bit auto-reload up/downcounter and a 16-bit prescaler. All timers feature 4 independent channels for input
capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/
PWMs on the largest packages.
TIM2, TIM3, TIM4 and TIM5 general-purpose timers can work together, or with the other general-purpose
timers and the advanced-control timers (TIM1, TIM8) via the Timer Link feature for synchronization or event
chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4 and TIM5 all have independent DMA request generation. They are capable of handling
quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.
TIM12, TIM13, TIM14, TIM15, TIM16 and TIM17
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13, TIM14, TIM16 and
TIM17 feature one independent channel, whereas TIM12 and TIM15 have two independent channels for
input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2,
TIM3, TIM4 and TIM5 full-featured general-purpose timers or used as simple time bases.
3.34.3 Basic timers (TIM6 and TIM7)
These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-
bit time base.
TIM6 and TIM7 support independent DMA request generation.
3.34.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3)
The low-power timers feature an independent clock and are running also in Stop mode if they are clocked by LSE,
LSI or an external clock. The low-power timers are able to wakeup the devices from Stop mode.
The low-power timers support the following features:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous / one-shot mode
Selectable software / hardware input trigger
Selectable clock source:
Internal clock source: LSE, LSI, HSI or APB clock
External clock source over LPTIM input (working even with no internal clock source running, used by the
Pulse Counter Application)
Programmable digital glitch filter
Encoder mode
3.34.5 Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an
independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and
Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-
running timer for application timeout management. It is hardware- or software-configurable through the option
bytes.
3.34.6 Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a
watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning
interrupt capability and the counter can be frozen in debug mode.
3.34.7 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It
features:
A 24-bit downcounter
STM32H7B3xI
Timers and watchdogs
DS13139 - Rev 6 page 29/234
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source.
3.35 Real-time clock (RTC)
The RTC is an independent BCD timer/counter. It supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD
(binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master
clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the
calendar precision.
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
Timestamp feature which can be used to save the calendar content. This function can be triggered by an
event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode.
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.
The RTC is supplied through a switch that takes power either from the VDD supply when present or from the VBAT
pin.
The RTC clock sources can be:
A 32.768 kHz external crystal (LSE)
An external resonator or oscillator (LSE)
The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
The high-speed external clock (HSE) divided by 32.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by
the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes.
All RTC events (Alarm, Wakeup Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device
from the low-power modes.
3.36 Tamper and backup registers (TAMP)
The TAMP main features are the following:
32 backup registers:
The backup registers (TAMP_BKPxR) are implemented in the RTC domain that remains powered-on
by VBAT when the VDD power is switched off.
Three external tamper detection events
Each external event can be configured to be active or passive
External passive tampers with configurable filter and internal pull-up
Seven internal tamper events
Any tamper detection can generate an RTC timestamp event
Any tamper detection can erase the RTC backup registers, the backup SRAM and the memory regions
protected by the on-the-fly decryption engine (OTFDEC)
Monotonic counter
3.37 Inter-integrated circuit interface (I2C)
The STM32H7B3xI embed four I2C interfaces.
The I2C bus interface handles communications between the microcontroller and the serial I2C bus. It controls all
I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
STM32H7B3xI
Real-time clock (RTC)
DS13139 - Rev 6 page 30/234
I2C-bus specification and user manual rev. 5 compatibility:
Slave and master modes, multimaster capability
Standard-mode (Sm), with a bit rate up to 100 kbit/s
Fast-mode (Fm), with a bit rate up to 400 kbit/s
Fast-mode Plus (Fm+), with a bit rate up to 1 Mbit/s and 20 mA output drive I/Os
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
Programmable setup and hold times
Optional clock stretching
System management bus (SMBus) specification rev 2.0 compatibility:
Hardware PEC (packet error checking) generation and verification with ACK control
Address resolution protocol (ARP) support
SMBus alert
Power system management protocol (PMBus) specification rev 1.1 compatibility
Independent clock: a choice of independent clock sources allowing the I2C communication speed to be
independent from the PCLK reprogramming.
Wakeup from Stop mode on address match
Programmable analog and digital noise filters
1-byte buffer with DMA capability
3.38 Universal synchronous/asynchronous receiver transmitter (USART)
The STM32H7B3xI devices have five embedded universal synchronous receiver transmitters (USART1, USART2,
USART3, USART6 and USART10) and five universal asynchronous receiver transmitters (UART4, UART5,
UART7, UART8 and UART9). Refer to the table below for a summary of USARTx and UARTx features.
These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor
communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. They
provide hardware management of the CTS and RTS signals, and RS485 Driver Enable. They are able to
communicate at speeds of up to 10Mbit/s.
USART1, USART2, USART3, USART6 and USART10 also provide Smartcard mode (ISO 7816 compliant) and
SPI-like communication capability.
The USARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by
software and is disabled by default.
All USART have a clock domain independent from the CPU clock, allowing the USARTx to wake up the MCU
from Stop mode.The wakeup from Stop mode are programmable and can be done on:
Start bit detection
Any received data frame
A specific programmed data frame
Specific TXFIFO/RXFIFO status when FIFO mode is enabled.
All USART interfaces can be served by the DMA controller.
Table 5. USART features
X = supported.
USART modes/features USART1/2/3/6/10 UART4/5/7/8/9
Hardware flow control for modem X X
Continuous communication using DMA X X
Multiprocessor communication X X
Synchronous mode (Master/Slave) X -
Smartcard mode X -
Single-wire Half-duplex communication X X
STM32H7B3xI
Universal synchronous/asynchronous receiver transmitter (USART)
DS13139 - Rev 6 page 31/234
USART modes/features USART1/2/3/6/10 UART4/5/7/8/9
IrDA SIR ENDEC block X X
LIN mode X X
Dual clock domain and wakeup from low power mode X X
Receiver timeout interrupt X X
Modbus communication X X
Auto baud rate detection X X
Driver Enable X X
USART data length 7, 8 and 9 bits
Tx/Rx FIFO X X
Tx/Rx FIFO size 16
3.39 Low-power universal asynchronous receiver transmitter (LPUART)
The device embeds one Low-power UART (LPUART1). The LPUART supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire communication and modem
operations (CTS/RTS). It allows multiprocessor communication.
The LPUART embeds a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by
software and is disabled by default.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode.
The wakeup from Stop mode are programmable and can be done on:
Start bit detection
Any received data frame
A specific programmed data frame
Specific TXFIFO/RXFIFO status when FIFO mode is enabled.
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in
Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption.
Higher speed clock can be used to reach higher baud rates.
LPUART interface can be served by the DMA controller.
3.40 Serial peripheral interfaces (SPI)/integrated interchip sound interfaces (I2S)
The devices feature up to six SPIs (SPI1/I2S1, SPI2/I2S2, SPI3/I2S3, SPI6/I2S6 and SPI4, SPI5) that allow
communicating up to 50 Mbits/s in master and slave modes, in half-duplex, full-duplex and simplex modes. The 3-
bit prescaler gives 8 master mode frequencies and the frame is configurable from 4 to 16 bits. All SPI interfaces
support NSS pulse mode, TI mode, Hardware CRC calculation and 8x 8-bit embedded Rx and Tx FIFOs with
DMA capability.
Four standard I2S interfaces (multiplexed with SPI1, SPI2, SPI3, SPI6) are available. They can be operated in
master or slave mode, in simplex communication modes, and can be configured to operate with a 16-/32-bit
resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported.
When one or all I2S interfaces is/are configured in master mode, the master clock can be output to the external
DAC/codec at 256 times the sampling frequency. All I2S interfaces support 16x 8-bit embedded Rx and Tx FIFOs
with DMA capability.
3.41 Serial audio interfaces (SAI)
The devices embed two SAIs (SAI1, SAI2) that allow designing many stereo or mono audio protocols such as
I2S, LSB or MSB-justified, PCM/DSP, TDM or AC’97. An SPDIF output is available when the audio block is
configured as a transmitter. To bring this level of flexibility and reconfigurability, the SAI contains two independent
audio sub-blocks. Each block has it own clock generator and I/O line controller.
Audio sampling frequencies up to 192 kHz are supported.
One of the SAI supports up to 8 microphones thanks to an embedded PDM interface.
STM32H7B3xI
Low-power universal asynchronous receiver transmitter (LPUART)
DS13139 - Rev 6 page 32/234
The SAI can work in master or slave configuration. The audio sub-blocks can be either receiver or transmitter and
can work synchronously or asynchronously (with respect to the other one). The SAI can be connected with other
SAIs to work synchronously.
3.42 SPDIFRX receiver interface (SPDIFRX)
The SPDIFRX peripheral is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These
standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound,
such as those defined by Dolby or DTS (up to 5.1).
The main SPDIFRX features are the following:
Up to 4 inputs available
Automatic symbol rate detection
Maximum symbol rate: 12.288 MHz
Stereo stream from 32 to 192 kHz supported
Supports Audio IEC-60958 and IEC-61937, consumer applications
Parity bit management
Communication using DMA for audio samples
Communication using DMA for control and user channel information
Interrupt capabilities
The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and decode the incoming
data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIFRX
will re-sample the incoming signal, decode the Manchester stream, recognize frames, sub-frames and blocks
elements. It delivers to the CPU decoded data, and associated status flags.
The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF sub-frame rate that will
be used to compute the exact sample rate for clock drift algorithms.
3.43 Single wire protocol master interface (SWPMI)
The single wire protocol master interface (SWPMI) is the master interface corresponding to the contactless
frontend (CLF) defined in the ETSI TS 102 613 technical specification. The main features are:
full-duplex communication mode
automatic SWP bus state management (active, suspend, resume)
configurable bit rate up to 2 Mbit/s
automatic SOF, EOF and CRC handling
SWPMI can be served by the DMA controller.
3.44 Management data input/output (MDIO) slaves
The devices embed an MDIO slave interface it includes the following features:
32 MDIO register addresses, each of which is managed using separate input and output data registers:
32 x 16-bit firmware read/write, MDIO read-only output data registers
32 x 16-bit firmware read-only, MDIO write-only input data registers
Configurable slave (port) address
Independently maskable interrupts/events:
MDIO register write
MDIO register read
MDIO protocol error
Able to operate in and wake up from STOP mode
3.45 SD/SDIO/MMC card host interfaces (SDMMC)
Two SDMMC host interfaces are available. They support MultiMediaCard System Specification version 4.51 in
three different databus modes: 1 bit (default), 4 bits and 8 bits.
STM32H7B3xI
SPDIFRX receiver interface (SPDIFRX)
DS13139 - Rev 6 page 33/234
One of the SDMMC interface can be supplied through a separate VDDMMC supply. If required, it can thus operate
at a different voltage level than all other I/Os.
Both interfaces support the SD memory card specifications version 4.1. and the SDIO card specification version
4.0. in two different databus modes: 1 bit (default) and 4 bits.
Each SDMMC host interface supports only one SD/SDIO/MMC card at any one time and a stack of MMC Version
4.51 or previous.
The SDMMC host interface embeds a dedicated DMA controller allowing high-speed transfers between the
interface and the SRAM.
3.46 Controller area network (FDCAN1, FDCAN2)
The controller area network (CAN) subsystem consists of two CAN modules, a shared message RAM memory
and a clock calibration unit.
Both CAN modules (FDCAN1 and FDCAN2) are compliant with ISO 11898-1 (CAN protocol specification version
2.0 part A, B) and CAN FD protocol specification version 1.0.
FDCAN1 supports time triggered CAN (TTCAN) specified in ISO 11898-4, including event synchronized time-
triggered communication, global system time, and clock drift compensation. FDCAN1 contains additional
registers, specific to the time triggered feature. The CAN FD option can be used together with event-triggered and
time-triggered CAN communication.
A 10 Kbyte message RAM memory implements filters, receive FIFOs, receive buffers, transmit event FIFOs,
transmit buffers (and triggers for TTCAN). This message RAM is shared between the two FDCAN1 and FDCAN2
modules.
The common clock calibration unit is optional. It can be used to generate a calibrated clock for both FDCAN1 and
FDCAN2 from the HSI internal RC oscillator and the PLL, by evaluating CAN messages received by the FDCAN1.
3.47 Universal serial bus on-the-go high-speed (OTG_HS)
The devices embed an USB OTG high-speed (up to 480 Mbit/s) device/host/OTG peripheral that supports both
full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 Mbit/s) and a
UTMI low-pin interface (ULPI) for high-speed operation (480 Mbit/s). When using the USB OTG_HS interface in
HS mode, an external PHY device connected to the ULPI is required.
The USB OTG_HS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It
features software-configurable endpoint setting and supports suspend/resume. The USB OTG_HS controller
requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.
The main features are:
Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
8 bidirectional endpoints
16 host channels with periodic OUT support
Software configurable to OTG1.3 and OTG2.0 modes of operation
USB 2.0 LPM (Link Power Management) support
Battery Charging Specification Revision 1.2 support
Internal FS OTG PHY support
External HS or HS OTG operation supporting ULPI in SDR mode
The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the
60 MHz output.
Internal USB DMA
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed in case bus-powered devices are connected
3.48 High-definition multimedia interface (HDMI) - consumer electronics control
(CEC)
The device embeds a HDMI-CEC controller that provides hardware support for the consumer electronics control
(CEC) protocol (supplement 1 to the HDMI standard).
STM32H7B3xI
Controller area network (FDCAN1, FDCAN2)
DS13139 - Rev 6 page 34/234
This protocol provides high-level control functions between all audiovisual products in an environment. It is
specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain
independent from the CPU clock, allowing the HDMI-CEC controller to wake up the MCU from Stop mode on data
reception.
3.49 Debug infrastructure
The devices offer a comprehensive set of debug and trace features to support software development and system
integration.
Breakpoint debugging
Code execution tracing
Software instrumentation
JTAG debug port
Serial-wire debug port
Trigger input and output
Serial-wire trace port
Trace port
Arm® CoreSight debug and trace components
The debug can be controlled via a JTAG/Serial-wire debug access port, using industry standard debugging tools.
The trace port performs data capture for logging and analysis.
STM32H7B3xI
Debug infrastructure
DS13139 - Rev 6 page 35/234
4Memory mapping
Refer to the product line reference manual (RM0455) for details on the memory mapping as well as the boundary
addresses for all peripherals.
STM32H7B3xI
Memory mapping
DS13139 - Rev 6 page 36/234
5Pin descriptions
Figure 4. LQFP64 (STM32H7B3xI without SMPS) pinout
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA0
PA1
PA2
PC13
48
46
45
44
43
42
41
40
39
38
37
36
35
34
33
47
55
53
52
51
50
49
56
54
61
59
57
64
63
62
60
58
26
28
29
30
31
32
25
27
20
22
24
17
18
19
21
23
PA3
VSS
PA5
PC4
PB2
VDD
PA4
PC5
VCAP
PA6
PA7
VSS
PB0
PB1
PB10
VDD
VDD
VCAP
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC7
PC6
PB15
PB14
PB13
PB12
VSS
VDD
VSS
BOOT0
PB5
PC12
PB9
PB8
PB4
PC10
PB7
PB6
PA15
PB3
PD2
PC11
PA14
LQFP64
1. The above figure shows the package top view.
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 37/234
Figure 5. LQFP100 (STM32H7B3xI with SMPS) pinout
VDD
VDDLDO
VSS
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
VDD
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76
PE2 1 75 VDD
2 74 VDDLDO
PE4
3 73
VCAP
PE5
4 72
PA13
VDD
5 71
PA12
VBAT
6 70
PA11
PC13
7 69
PA10
PC14-OSC32_ON
8 68
PA9
PC15-OSC32_OUT
9 67
PA8
VDDSMPS
10 66
PC9
VFBSMPS
11 65
PC8
PH0-OSC_IN
12 64
PC7
13 63
PC6
NRST
14 62
PD15
PC0
15 61
PD14
PC1
16 60
PD13
PC2_C
17 59
PD12
PC3_C
18 58
PD11
VSSA
19 57
PD10
VREF+
20 56
PD9
VDDA
21 55
PD8
PA0
22 54
PB15
23 53
24 52
25 51
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PA1
PA2
PA3
PB10
PB11
VCAP
VSS
PB14
PH1-OSC_OUT
LQFP100
VDD33USB
VSS
VDD
VSS
PB13
PB12
VDDLDO
VDD
VDD
VSS
VLXSMPS
VSSMPS
1. The above figure shows the package top view.
2. The devices with SMPS correspond to commercial code STM32H7B3VIT6Q.
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 38/234
Figure 6. LQFP100 (STM32H7B3xI without SMPS) pinout
VDD
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76
PE2 1 75 VDD
PE3 2 74 VSS
PE4 3 73 VCAP
PE5 4 72 PA13
PE6 5 71 PA12
VBAT 6 70 PA11
PC13 7 69 PA10
PC14-OSC32_ON 8 68 PA9
PC15-OSC32_OUT 9 67 PA8
VSS 10 66 PC9
VDD 11 65 PC8
PH0-OSC_IN 12 64 PC7
13 63 PC6
NRST 14 62 PD15
PC0 15 61 PD14
PC1 16 60 PD13
PC2_C 17 59 PD12
PC3_C 18 58 PD11
VSSA 19 57 PD10
VREF+ 20 56 PD9
VDDA 21 55 PD8
PA0 22 54 PB15
PA1 23 53 PB14
PA2 24 52 PB13
PA3 25 51 PB12
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP
VSS
VDD
PH1-OSC_OUT LQFP100
1. The above figure shows the package top view.
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 39/234
Figure 7. TFBGA100 (STM32H7B3xI with SMPS) pinout
PB8
4
PE0
PE1
PB6
PB0
PC5
PC13
PC2_C
PC3_C
PC4
PE6 PE5 PE2 BOOT0 PB5 PD6 PD3 PD2 PC12
1 2 3 5 6 7 8 9 10
A
B
C
D
E
F
G
H
J
K
PC14-
OSC32_IN
PC15-
OSC32_
OUT
PE3 PB7 PB3 PD4 PD1 PC11 PC10
VSS VBAT PE4 PB4 PA15 PA14 PA13
VSSSMPS VLXSMPS PDR_ON PA11
VDDSMPS VFBSMPS PB9 PA10
PC1 NRST
PH0-
OSC_IN
PH1-
OSC_OUT
VDDA VSSA PA2 PD13
VREF+ PA1 PA6 PD10
PA4 PA5 PA7 PB1 PB12 PB14 PB15
PD7 PD0
VSS VDD PD5 VCAP PA12
VDD VDD50
USB
VCAP PD14
PC0
PA0
PB2 PE8 PB11 PB13 PD8
PE9 PB10
PA9
PC9
PC7
PD12
PA8
PC8
VDD33
USB
VDD VDDLDO VSS
VSS PC6
PA3 PD15
PE10 PD11PE7 PD9
1. The above figure shows the package top view.
2. The devices with SMPS correspond to commercial code STM32H7B3VIH6Q.
Figure 8. TFBGA100 (STM32H7B3xI without SMPS) pinout
PB9
4
PB8
PE1
PE0
PB1
PB0
VSS
VDD
PC4
PC5
PC14-
OSC32_IN PC13 PE2 PB7 PB4 PB3 PA15 PA14 PA13
1 2 3 5 6 7 8 9 10
A
B
C
D
E
F
G
H
J
K
PC15-
OSC32_
OUT
VBAT PE3 PB6 PD5 PD2 PC11 PC10 PA12
PH0-
OSC_IN VSS PE4 PB5 PC12 PA9 PA11
PH1-
OSC_OUT VDD PE5 PA10
NRST PC2_C PE6 PC7
PC0 PC1
VSSA PA0
VDDA PA1 PA5 PB14
VSS PA2 PA6 PD13
VDD PA3 PA7 PE9 PB12 PD8 PD12
PD6 PD3
BOOT0 PD7 PD4 PD0 PA8
VDD33
USB PDR_ON
PE10 PE14
PC3_C
PA4
PE8 PE12 PB10 PB13 PD9
PE13 PB11
PC9
PC8
PD11
PD10
PC6
PB15
PD1VSS VSS VCAP
VDD VCAP
PB2 PD15
PE11 PE15PE7 PD14
1. The above figure shows the package top view.
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 40/234
Figure 9. WLCSP132 (STM32H7B3xI with SMPS) ballout
PD3
4
PD4
PD0
PC11
VSS
PB11
VCAP
PA14
PA9
PD11
PB15
VSS VDD PC10 VSS PG10 VDD PB3 BOOT0 VCAP VDDLDO VDD
1 2 3 5 6 7 8 9 10 11 12
A
B
C
D
E
F
G
H
J
K
L
VDDLDO VSS PC12 VDD
MMC PG11 VSS VDDMMC PB8 VSS VDD
PC14-
OSC32_
IN
PA12 VCAP PA15 PD5 PB6 PE1 PE6
PC15-
OSC32_
OUT
VSS
PA11 PA10 PA13 PE5 VBAT VSSSMPS
PC7 PC9 PA8 PC13 VFBSMPS VLXSMPS
VDD33
USB
VDD50
USB VSS VDDSMPS
VDD VSS PH0-
OSC_IN VDD
PD15 PD13 PD8 VDD PC1 PH1-
OSC_OUT
PD14 PD9 PB14 VDDA VREF+ PC2
PD10 PB13 VDDLDO PE12 PB0 PA7 PA4 PA0 VSSA
VDD PB12 VDD PE13 VDD PE7 PB2 VSS VDD PA5 VSS
PG12 PG14
PD2 PG9 PG13 PB7 PDR_ON
PD6 PB5
PE10 PA6
PC6
PD12
PE11 PE9 PB1 PC5 PA3
VSS PF14
PE3
PE4
PC3
VSS
NRST
PC0
PB9PD1 PD7 PB4
PB10 PE0
PE15 PA1
PE8 PC4PE14 PA2
1. The above figure shows the package top view.
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 41/234
Figure 10. LQFP144 (STM32H7B3xI with SMPS) pinout
LQFP144
23
24
25
26
27
28
29
30
31
32
33
34
35
36
20
22
15
17
19
13
14
16
18
PF7
PF9
PF10
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2_C
PC3_C
VDD
VSS
VSSA
VREF+
VDDA
PF6
PF8
VLXSMPS
VFBSMPS
VDD
VDD
VSSSMPS
VDDSMPS
VSS
88
86
85
84
83
82
81
80
79
78
77
76
75
74
73
89
87
94
92
90
97
96
95
93
91
135
133
132
131
130
129
128
127
126
125
124
123
122
121
136
134
141
139
137
144
143
142
140
138
47
49
50
51
52
53
54
55
56
57
58
59
60
61
72
46
48
41
43
45
38
39
40
42
44
PA1
PA2
VDD
PA6
PB0
PA3
VSS
PA7
PB2
PF15
PA4
PA5
PF11
VSS
PE8
PC4
PC5
VDD
PE9
PE11
PB1
PF14
PE7
PE10
PB12
PG8
PG6
PD15
PD14
PD13
PD12
PD11
VSS
VDD
PD10
PD9
PD8
PB15
PB14
PB13
VSS
PG7
PC7
VDD
VDD50USB
PA8
PC9
PC8
PC6
VDD33USB
VDD
VDDLDO
VCAP
PB9
PB6
PDR_ON
VSS
PB8
PB4
VSS
PE1
PE0
PB3
PG14
PG11
BOOT0
PB7
PG13
PG10
PD7
PB5
VDD
PG12
PG9
120 PD6
119 VDDMMC
118 VSS
117 PD5
116 PD4
115 PD3
114 PD2
113 PD1
112 PD0
111 PC12
110 PC11
109 PC10
108 PA15
104
107
106
105
103
VSS
PA14
VDD
VDDLDO
VCAP
99
98
PA10
PA9
101
100
PA12
PA11
102 PA13
68
69
70
71
VCAP
VSS
VDD
VDDLDO
64
65
66
67
PE14
PE15
PB11
PB10
62
63
PE12
PE13
37PA0
12
11
6
8
10
4
5
7
9
VSS
PC15-OSC32_OUT
VSS
VBAT
PC14-OSC32_IN
PE5
PE6
VDD
PC13
3PE4
2PE3
1PE2
21
1. The above figure shows the package top view.
2. The devices with SMPS correspond to commercial code STM32H7B3ZIT6Q.
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 42/234
Figure 11. LQFP144 (STM32H7B3xI without SMPS) pinout
LQPF144
23
24
25
26
27
28
29
30
31
32
33
34
35
36
20
22
15
17
19
13
14
16
18
PF9
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2_C
PC3_C
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
PF8
PF10
PF5
VDD
PF7
PF3
PF4
VSS
PF6
88
86
85
84
83
82
81
80
79
78
77
76
75
74
73
89
87
94
92
90
97
96
95
93
91
135
133
132
131
130
129
128
127
126
125
124
123
122
121
136
134
141
139
137
144
143
142
140
138
47
49
50
51
52
53
54
55
56
57
58
59
60
61
72
46
48
41
43
45
38
39
40
42
44
VSS
VDD
PA6
PC5
PF11
PA4
PA5
PB0
VSS
PF14
PA7
PC4
VDD
PF15
PE7
PB1
PB2
PG0
PE8
VSS
PF12
PF13
PG1
PE9
VDD
PG3
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PG4
PG2
VSS
PG7
PG5
PC7
PC6
VDD33USB
PG8
PG6
VDD
PDR_ON
PB9
PB7
PB3
PE1
PE0
PB6
VDD
PG13
PB8
BOOT0
VSS
PG12
PG9
PB5
PB4
PG11
PD7
VDDMMC
PG15
PG14
PG10
PD6
120 VSS
119 PD5
118 PD4
117 PD3
116 PD2
115 PD1
114 PD0
113 PC12
112 PC11
111 PC10
110 PA15
109 PA14
108 VDD
104
107
106
105
103
PA12
VSS
VCAP
PA13
PA11
99
98
PC9
PC8
101
100
PA9
PA8
102 PA10
68
69
70
71
PE15
PB10
VCAP
PB11
64
65
66
67
PE11
PE12
PE14
PE13
62
63
VDD
PE10
37PA3
12
11
6
8
10
4
5
7
9
PF2
PF1
VBAT
PC14-OSC32_IN
PF0
PE5
PE6
PC13
PC15-OSC32_OUT
3PE4
2PE3
1PE2
21
1. The above figure shows the package top view.
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 43/234
Figure 12. LQFP176 (STM32H7B3xI with SMPS) pinout
LQFP176
23
24
25
26
27
28
29
30
31
32
33
34
35
36
20
22
15
17
19
13
14
16
18
PF3
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2_C
PF2
PF4
VLXSMPS
VFBSMPS
PF1
VDD
VSSSMPS
VDDSMPS
PF0
89
94
92
90
97
96
95
93
91
135
133
136
134
141
139
137
144
143
142
140
138
47
49
50
51
52
53
54
55
56
57
58
59
60
61
72
46
48
45
VSS
PA4
PA3
PA6
PC5
PA7
PB0
PF11
VSS
VDD
PB1
PF12
PF14
PA5
PC4
PB2
PF13
PE10
PD8
PD11
VDD
PD9
PD14
PD13
PD12
VSS
PD10
108 PK1
104
107
106
105
103
PJ11
PK0
VSS
VDD
PJ10
99
98
VDD
PD15
101
100
PJ8
VSS
102 PJ9
68
69
70
71
PE8
PE9
VDD
VSS
64
65
66
67
VSS
VDD
PE7
PG1
62
63
PF15
PG0
12
11
6
8
10
4
5
7
9
VSS
PC15-OSC32_OUT
VSS
VBAT
PC14-OSC32_IN
PE5
PE6
VDD
PC13
3PE4 2PE3 1PE2
21
37
38
39
40
41
42
43
44
73
74
85
81
82
83
84
77
78
79
80
75
76
88
86
87
124
122
121
120
119
118
117
116
115
114
113
112
111
110
109
123
PC8
PC6
VDD33USB
VDD50USB
VSS
PG8
PG7
PG6
PG5
PG4
VDD
VSS
PG3
PG2
PK2
PC7
125
PA12
PA11
PA10
PA9
PA8
VDD
PC9
PA13
131
130
129
128
127
126
132
147
145
148
146
153
151
149
156
155
154
152
150
157
158
163
161
159
166
165
164
162
160
173
171
176
175
174
172
170
169
168
167
VDDLDO
VCAP
VDD
VSS
PC11
PA15
VSS
PD1
PD0
PC12
PC10
PA14
PD4
PD2
PD5
PD3
PG9
VSS
PD6
PG12
PG11
PG10
VDDMMC
PD7
PG13
PG14
PB4
PG15
VSS
PB7
PB6
PB5
PB3
VDD
VSS
PE1
VDD
VDDLDO
PDR_ON
VCAP
PE0
PB9
PB8
BOOT0
PC3_C
VSSA
VREF+
VDDA
PA0
PA1
PA2
VDD
PE12
PE13
PE15
PE11
PE14
PB15
VDD
PB12
PB14
PB13
VCAP
VSS
VSS
VDDLDO
PB10
PB11
1. The above figure shows the package top view.
2. The devices with SMPS correspond to commercial code STM32H7B3IIT6Q.
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 44/234
Figure 13. LQFP176 (STM32H7B3xI without SMPS) pinout
LQFP176
23
24
25
26
27
28
29
30
31
32
33
34
35
36
20
22
15
17
19
13
14
16
18
PF5
VDD
PF6
PF7
PF8
PF9
PF10
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2_C
PC3_C
VDD
PF4
VSS
VDD
PF1
PF3
PI11
VSS
PF0
PF2
89
94
92
90
97
96
95
93
91
135
133
136
134
141
139
137
144
143
142
140
138
47
49
50
51
52
53
54
55
56
57
58
59
60
61
72
46
48
45
PH4
VDD
PH5
PA5
PC4
PA6
PC5
PB2
PA3
VSS
PB0
PF11
VSS
PA4
PA7
PB1
PF12
VDD
PH12
PB14
PB12
VSS
PD9
PD8
PB15
PB13
VDD
108 PG4
104
107
106
105
103
PD14
PG3
PG2
PD15
VDD
99
98
PD11
PD10
101
100
PD13
PD12
102 VSS
68
69
70
71
PE7
PE8
VSS
PE9
64
65
66
67
PF14
PF15
PG1
PG0
62
63
VDD
PF13
12
11
6
8
10
4
5
7
9
PI10
PI9
VBAT
PC13
PC15-OSC32_OUT
PE5
PE6
PI8
PC14-OSC32_IN
3PE4 2PE3 1PE2
21
37
38
39
40
41
42
43
44
73
74
85
81
82
83
84
77
78
79
80
75
76
88
86
87
124
122
121
120
119
118
117
116
115
114
113
112
111
110
109
123
PA13
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDD33USB
VSS
PG8
PG7
PG6
PG5
PA12
125
PI0
PH15
PH14
PH13
VDD
VSS
VCAP
PI1
131
130
129
128
127
126
132
147
145
148
146
153
151
149
156
155
154
152
150
157
158
163
161
159
166
165
164
162
160
173
171
176
175
174
172
170
169
168
167
VSS
PI2
VDD
PI3
PC12
PC10
PA14
PD2
PD1
PD0
PC11
PA15
PD5
PD3
VSS
PD4
PG10
PD7
VDDMMC
PG13
PG12
PG11
PG9
PD6
PG14
VSS
PB5
PB3
VDD
BOOT0
PB7
PB6
PB4
PG15
PI4
PDR_ON
PI7
PI6
PI5
VDD
PE1
PE0
PB9
PB8
VSSA
VREF+
VDDA
PA0
PA1
PA2
PH2
PH3
PE11
PE12
PE14
PE10
PE13
PH11
PH7
PH8
PH10
PH9
PB11
VCAP
PH6
VDD
PE15
PB10
1. The above figure shows the package top view.
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 45/234
Figure 14. TFBGA216 (STM32H7B3xI without SMPS) ballout
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
PE4 PE3 PE2 PG14 PE1 PE0 PB8 PB5 PB4 PB3 PD7 PC12 PA15 PA14 PA13
PE5 PE6 PG13 PB9 PB7 PB6 PG15 PG11 PJ13 PJ12 PD6 PD0 PC11 PC10 PA12
VBAT PI8 PI4 PK7 PK6 PK5 PG12 PG10 PJ14 PD5 PD3 PD1 PI3 PI2 PA11
PC13 PF0 PI5 PI7 PI10 PI6 PK4 PK3 PG9 PJ15 PD4 PD2 PH15 PI1 PA10
PC14-
OSC32_
IN PF1 PI12 PI9 BOOT0 VDD VDD VDD
MMC VDD VCAP PH13 PH14 PI0 PA9
PC15-
OSC32_
OUT
VSS PI11 VDD VDD VSS VSS VSS VSS VSS VDD PK1 PK2 PC9 PA8
PH0-
OSC_
IN
PF2 PI13 PI15 VDD VSS VSS VDD33
USB PJ11 PK0 PC8 PC7
PH1-
OSC_
OUT
PF3 PI14 PH4 VDD VSS VSS VDD PJ8 PJ10 PG8 PC6
NRST PF4 PH5 PH3 VDD VSS VSS VDD PJ7 PJ9 PG7 PG6
PF7 PF6 PF5 PH2 VDD VSS VSS VSS VSS VSS VDD PJ6 PD15 PB13 PD10
PF10 PF9 PF8 PC3_C VSS VSS VDD VDD VDD VDD VCAP PD14 PB12 PD9 PD8
VSSA PC0 PC1 PC2_C PB2 PF12 PG1 PF15 PJ4 PD12 PD13 PG3 PG2 PJ5 PH12
VREFPA1 PA0 PA4 PC4 PF13 PG0 PJ3 PE8 PG5 PG4 PH7 PH9 PH11
VREF+ PA2 PA6 PA5 PC5 PF14 PJ2 PF11 PE9 PE11 PE14 PB10 PH6 PH8 PH10
VDDA PA3 PA7 PB1 PB0 PJ0 PJ1 PE7 PE10 PE12 PE15 PE13 PB11 PB14 PB15
PD11
PDR
_ON
1. The above figure shows the package top view.
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 46/234
Figure 15. TFBGA225 (STM32H7B3xI with SMPS) ballout
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
VSS PI4 PB9 PB6 PG15 PK5 PG14 PG10 PG9 PD7 PD4 PD1 PC10 PI3 VSS
PE3 PI5 PE0 PB8 PB4 PK6 PK3 PG11 PJ15 PD6 PD2 PC12 PA14 PH15 PH14
PI8 PE4 PI6 PE1 BOOT0 PB3 PK4 PG12 PJ14 PD5 PD0 PA15 PI0 PA12 PA11
PC14-
OSC32_IN
PC15-
OSC32_
OUT
PE5 PI7 PDR_ON PB7 PK7 PG13 PJ13 PD3 PC11 PI2 PH13 VSS VDD50
USB
VSS VBAT PI9 PE6 PE2 VCAP PB5 VDD
MMC PJ12 VDDLDO PI1 PA13 PA10 PC9 PC7
VLX
SMPS
VFB
SMPS PI10 PC13 VDDLDO VSS VDD VSS VDD VSS VCAP PA9 PC8 PC6 PG8
VDD
SMPS
VSS
SMPS PF1 PF0 PI11 VDD VDD VSS VDD VDD PA8 PG7 PG6 PG5 PG3
PF2 PI12 PF4 PI14 PI13 VSS VSS VSS VSS VSS VDD33
USB PG4 PG2 PK2 PK1
PF3 PF5 PF6 PF7 PC2 VDD VDD VSS VDD VDD PJ11 PK0 PJ10 PJ9 PJ8
PF8 PF9 NRST VREFVSSA VSS VDD VSS VDD VSS PD13 PD14 PD15 PJ6 PJ7
PH0-
OSC_IN PH1-
OSC_OUT PC0 VREF+ VDDA PA4 PB1 VCAP PE12 VDDLDO PH12 PD8 PD10 PD11 PD12
VSS PC1 PF10 PH2 PH4 PC4 PI15 PF13 PE7 PE13 PH6 PH10 PB13 PB14 PB15
PC2_C PC3_C PC3 PH3 PA5 PC5 PJ0 PF11 PF15 PE14 PE10 PJ5 PH9 PB12 PD9
PA0 PA1 PA0_C PH5 PA6 PB0 PJ1 PJ4 PF14 PG1 PE9 PE15 PB11 PH8 PH11
VSS PA2 PA1_C PA3 PA7 PB2 PJ2 PJ3 PF12 PG0 PE8 PE11 PB10 PH7 VSS
1. The above figure shows the package top view.
Figure 16. UFBGA169 (STM32H7B3xI with SMPS) ballout
1 2 3 4 5 6 7 8 9 10 11 12 13
APE4 PE2 VDD VCAP PB6 VDDMMC VDD PG10 PD5 VDD PC12 PC10 PH14
B
PC15-
OSC32_
OUT
PE3 VSS VDDLDO PB8 PB4 VSS PG11 PD6 VSS PC11 PA14 PH13
CPC14-
OSC32_IN PE6 PE5 PDR_ON PB9 PB5 PG14 PG9 PD4 PD1 PA15 VSS VDD
DVDD VSS PC13 PE1 PE0 PB7 PG13 PD7 PD3 PD0 PA13 VDDLDO VCAP
EVLXSMPS VSSSMPS VBAT PF1 PF3 BOOT0 PG15 PG12 PD2 PA10 PA9 PA8 PA12
FVDDSMPS VFBSMPS PF0 PF2 PF5 PF7 PB3 PG4 PC6 PC7 PC9 PC8 PA11
GVDD VSS PF4 PF6 PF9 NRST PF13 PE7 PG6 PG7 PG8 VDD50USB VDD33USB
HPH0-
OSC_IN
PH1-
OSC_OUT PF10 PF8 PC2 PA4 PF14 PE8 PG2 PG3 PG5 VSS VDD
JPC0 PC1 VSSA PC3 PA0 PA7 PF15 PE9 PE14 PD11 PD13 PD15 PD14
KPC3_C PC2_C PA0_C PA1 PA6 PC4 PG0 PE13 PH10 PH12 PD9 PD10 PD12
LVDDA VREF+ PA1_C PA5 PB1 PB2 PG1 PE12 PB10 PH11 PB13 VSS VDD
MVDD VSS PH3 VSS PB0 PF11 VSS PE10 PB11 VDDLDO VSS PD8 PB15
NPA2 PH2 PA3 VDD PC5 PF12 VDD PE11 PE15 VCAP VDD PB12 PB14
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 47/234
1. The above figure shows the package top view.
Figure 17. UFBGA176+25 (STM32H7B3xI with SMPS) ballout
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
AVSS PB8 VDDLDO VCAP PB6 PB3 PG11 PG9 PD3 PD1 PA15 PA14 VDDLDO VCAP VSS
BPE4 PE3 PB9 PE0 PB7 PB4 PG13 PD7 PD5 PD2 PC12 PH14 PA13 PA8 PA12
CPC13 VSS PE2 PE1 BOOT0 PB5 PG14 PG10 PD4 PD0 PC11 PC10 PH13 PA10 PA11
DPC15-
OSC32_
OUT
PC14-
OSC32_IN PE5 PDR_ON VDD
MMC VSS PG15 PG12 PD6 VSS VDD PH15 PA9 PC8 PC7
EVSS VBAT PE6 VDD VDD PC9 PC6 VDD50
USB
FVLX
SMPS
VSS
SMPS PF1 PF0 VSS VSS VSS VSS VSS VSS VDD33
USB PG6 PG5
GVDD
SMPS
VFB
SMPS PF2 VDD VSS VSS VSS VSS VSS PG8 PG7 PG4 PG2
HPF6 PF4 PF5 PF3 VSS VSS VSS VSS VSS VDD PG3 PD14 PD13
JPH0-
OSC_IN PF8 PF7 PF9 VSS VSS VSS VSS VSS PD15 PD11 VSS PD12
K
PH1-
OSC_
OUT
VSS PF10 VDD VSS VSS VSS VSS VSS VSS PD9 PB15 PB14
LNRST PC0 PC1 VREFVDD PD10 PD8 PB13
MPC2 PC3 VREF+ VDDA VDD VSS PC5 PB1 VDD VSS PH7 PE14 PH11 PH9 PB12
NPC2_C PC3_C VSSA PH2 PA3 PA7 PF11 PE8 PG1 PF15 PF13 PB10 PH8 PH10 PH12
PPA0 PA1 PA1_C PH4 PA4 PA5 PB2 PG0 PE7 PB11 PF12 PE12 PE13 PE15 PH6
RVSS PA2 PA0_C PH3 PH5 PC4 PA6 PB0 PE10 PF14 PE9 PE11 VCAP VDDLDO VSS
1. The above figure shows the package top view.
2. The devices with SMPS correspond to commercial code STM32H7B3IIK6Q.
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 48/234
Figure 18. UFBGA176+25 (STM32H7B3xI without SMPS) ballout
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
PE3 PE2 PE1 PE0 PB8 PB5 PG14 PG13 PB4 PB3 PD7 PC12 PA15 PA14 PA13
PE4 PE5 PE6 PB9 PB7 PB6 PG15 PG12 PG11 PG10 PD6 PD0 PC11 PC10 PA12
VBAT PI7 PI6 PI5 VDD PDR_ON VDD VDD PG9 PD5 PD1 PI3 PI2 PA11
PC13 PI8 PI9 PI4 VSS BOOT0 VSS VSS VSS PD4 PD3 PD2 PH15 PI1 PA10
PC14-
OSC32_
IN
PF0 PI10 PI11 PH13 PH14 PI0 PA9
PC15-
OSC32_
OUT
VSS VDD PH2 VSS VSS VSS VSS VSS VSS VCAP PC9 PA8
PH0-
OSC_IN VSS VDD PH3 VSS VSS VSS VSS VSS VSS VDD PC8 PC7
PH1-
OSC_
OUT
PF2 PF1 PH4 VSS VSS VSS VSS VSS VSS VDD33
USB
PG8 PC6
NRST PF3 PF4 PH5 VSS VSS VSS VSS VSS VDD VDD PG7 PG6
PF7 PF6 PF5 VDD VSS VSS VSS VSS VSS PH12 PG5 PG4 PG3
PF10 PF9 PF8 VSS PH11 PH10 PD15 PG2
VSSA PC0 PC1 PC2_C PC3_C PB2 PG1 VSS VSS VCAP PH6 PH8 PH9 PD14 PD13
VREFPA1 PA0 PA4 PC4 PF13 PG0 VDD VDD VDD PE13 PH7 PD12 PD11 PD10
VREF+ PA2 PA6 PA5 PC5 PF12 PF15 PE8 PE9 PE11 PE14 PB12 PB13 PD9 PD8
VDDA PA3 PA7 PB1 PB0 PF11 PF14 PE7 PE10 PE12 PE15 PB10 PB11 PB14 PB15
VDD
MMC
1. The above figure shows the package top view.
Table 6. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin
function during and after reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
ANA Analog-only Input
I/O structure
FT 5 V tolerant I/O
TT 3.3 V tolerant I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with
embedded weak pull-up resistor
Option for TT and FT I/Os
_f I2C FM+ option
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 49/234
Name Abbreviation Definition
I/O structure
_a analog option (supplied by VDDA)
_u USB option (supplied by
VDD33USB)
_h0 (1) High-speed low voltage (mainly
SDMMC2 on VDDMMC power rail)
_h1(1) High-speed low voltage (mainly
for OCTOSPI)
_h2(1) High-speed low voltage (mainly
for FMC)
_h3(1) High-speed low voltage
_s Secondary supply (supplied by
VDDMMC) (2)
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs
during and after reset.
Pin functions Alternate functions Functions selected through GPIOx_AFR registers
Additional functions Functions directly selected/enabled through peripheral registers
1. Refer to SYSCFG_CCCSR register in the device reference manual for how to set a group of I/Os in High-
speed low-voltage mode. Depending on the chosen I/Os (for example OCTOSPI), it can belong to several
groups of I/Os and several HSLVx bits need to be set (refer to Table Pin/ball definition). Take care that the
VDDIO_HSLV and/or VDDMMC_HSLV option bits must also be set.
2. Refer to the table Features and peripheral counts for the list of packages featuring a VDDMMC separate
supply pad.
Table 7. STM32H7B3xI pin/ball definition
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
1 A3 1 - A2 C3 1 E5 - A3 1 1 A2 1 A3 PE2 I/O FT_h2
TRACECLK,
SAI1_CK1, SPI4_SCK,
SAI1_MCLK_A,
OCTOSPIM_P1_IO2,
USART10_RX,
FMC_A23, EVENTOUT
-
- B3 2 E9 B2 B2 2 B1 - B3 2 2 A1 2 A2 PE3 I/O FT_h2
TRACED0,
TIM15_BKIN,
SAI1_SD_B,
USART10_TX,
FMC_A19, EVENTOUT
-
2 C3 3 F9 A1 B1 3 C2 - C3 3 3 B1 3 A1 PE4 I/O FT_h2
TRACED1, SAI1_D2,
DFSDM1_DATIN3,
TIM15_CH1N,
SPI4_NSS,
SAI1_FS_A, FMC_A20,
DCMI_D4/PSSI_D4,
LCD_B0, EVENTOUT
-
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 50/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
3 A2 4 D10 C3 D3 4 D3 - D3 4 4 B2 4 B1 PE5 I/O FT_h2
TRACED2, SAI1_CK2,
DFSDM1_CKIN3,
TIM15_CH1,
SPI4_MISO,
SAI1_SCK_A,
FMC_A21, DCMI_D6/
PSSI_D6, LCD_G0,
EVENTOUT
-
- A1 5 C10 C2 E3 5 E4 - E3 5 5 B3 5 B2 PE6 I/O FT_h2
TRACED3,
TIM1_BKIN2, SAI1_D1,
TIM15_CH2,
SPI4_MOSI,
SAI1_SD_A,
SAI2_MCK_B,
TIM1_BKIN2_COMP12,
FMC_A22, DCMI_D7/
PSSI_D7, LCD_G1,
EVENTOUT
-
- - 6 - B3 A1 6 F6 - - - - D5 - G6 VSS S - - -
4 E5 7 B11 A3 - 7 F7 - - - - C5 - F5 VDD S - - -
5 C2 8 D11 E3 E2 8 E2 1 B2 6 6 C1 6 C1 VBAT S - - -
- C1 - - D2 A15 - A15 - - - - - - - VSS S - - -
- - - - - - - C1 - - - - D2 7 C2 PI8 I/O FT EVENTOUT
TAMP_IN2/
TAMP_OUT3,
RTC_OUT2,
WKUP3
6 E4 9 E10 D3 C1 9 F4 2 A2 7 7 D1 8 D1 PC13 I/O FT EVENTOUT
TAMP_IN1/
TAMP_OUT2/
TAMP_OUT3,
RTC_OUT1/
RTC_TS,
WKUP2
- - - C12 - C2 - A1 - - - - F7 - - VSS S - - -
7 B1 10 B12 C1 D2 10 D1 3 A1 8 8 E1 9 E1
PC14-
OSC32_IN
(OSC32_IN)
I/O FT EVENTOUT OSC32_IN
8 B2 11 C11 B1 D1 11 D2 4 B1 9 9 F1 10 F1
PC15-
OSC32_OUT
(OSC32_OUT)
I/O FT EVENTOUT OSC32_OUT
- - - - - - - E3 - - - - D3 11 E4 PI9 I/O FT_h2
OCTOSPIM_P2_IO0,
UART4_RX,
FDCAN1_RX,
FMC_D30,
LCD_VSYNC,
EVENTOUT
-
- - - - - - - F3 - - - - E3 12 D5 PI10 I/O FT_h2
OCTOSPIM_P2_IO1,
FMC_D31, PSSI_D14,
LCD_HSYNC,
EVENTOUT
-
- - - - - - - G5 - - - - E4 13 F3 PI11 I/O FT
OCTOSPIM_P2_IO2,
LCD_G6,
OTG_HS_ULPI_DIR,
PSSI_D15, EVENTOUT
WKUP4
- - 12 - - D10 12 E1 - - - - F2 14 F2 VSS S - - -
- D6 13 G12 D1 D11 13 G6 - - - - F3 15 F4 VDD S - - -
9 D1 14 D12 E2 F2 14 G2 - - - - - - - VSSSMPS S - - -
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 51/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
10 D2 15 E12 E1 F1 15 F1 - - - - - - - VLXSMPS S - - -
11 E1 16 F12 F1 G1 16 G1 - - - - - - - VDDSMPS S - - -
12 E2 17 E11 F2 G2 17 F2 - - - - - - - VFBSMPS S - - -
- - - - F3 F4 18 G4 - - - 10 E2 16 D2 PF0 I/O FT_f
I2C2_SDA,
OCTOSPIM_P2_IO0,
FMC_A0, EVENTOUT
-
- - - - E4 F3 19 G3 - - - 11 H3 17 E2 PF1 I/O FT_f
I2C2_SCL,
OCTOSPIM_P2_IO1,
FMC_A1, EVENTOUT
-
- - - - F4 G3 20 H1 - - - 12 H2 18 G2 PF2 I/O FT_h2
I2C2_SMBA,
OCTOSPIM_P2_IO2,
FMC_A2, EVENTOUT
-
- - - - - - - H2 - - - - - - E3 PI12 I/O FT_h1
OCTOSPIM_P2_IO3,
LCD_HSYNC,
EVENTOUT
-
- - - - - - - H5 - - - - - - G3 PI13 I/O FT_h1
OCTOSPIM_P2_CLK,
LCD_VSYNC,
EVENTOUT
-
- - - - - - - H4 - - - - - - H3 PI14 I/O FT_h1 OCTOSPIM_P2_NCLK,
LCD_CLK, EVENTOUT -
- - - - E5 H4 21 J1 - - - 13 J2 19 H2 PF3 I/O FT_h2 OCTOSPIM_P2_IO3,
FMC_A3, EVENTOUT -
- - - - G3 H2 22 H3 - - - 14 J3 20 J2 PF4 I/O FT_h2 OCTOSPIM_P2_CLK,
FMC_A4, EVENTOUT -
- - - - F5 H3 23 J2 - - - 15 K3 21 K3 PF5 I/O FT_h2 OCTOSPIM_P2_NCLK,
FMC_A5, EVENTOUT -
- F5 18 F11 B7 E1 24 H6 - C2 10 16 G2 22 H6 VSS S - - -
- F6 19 - A7 E4 25 J6 - D2 11 17 G3 23 H5 VDD S - - -
- - 20 - G4 H1 26 J3 - - - 18 K2 24 K2 PF6 I/O FT_h1
TIM16_CH1,
SPI5_NSS,
SAI1_SD_B,
UART7_Rx,
OCTOSPIM_P1_IO3,
EVENTOUT
-
- - 21 - F6 J3 27 J4 - - - 19 K1 25 K1 PF7 I/O FT_h1
TIM17_CH1,
SPI5_SCK,
SAI1_MCLK_B,
UART7_Tx,
OCTOSPIM_P1_IO2,
EVENTOUT
-
- - 22 - H4 J2 28 K1 - - - 20 L3 26 L3 PF8 I/O FT_h1
TIM16_CH1N,
SPI5_MISO,
SAI1_SCK_B,
UART7_RTS,
TIM13_CH1,
OCTOSPIM_P1_IO0,
EVENTOUT
-
- - 23 - G5 J4 29 K2 - - - 21 L2 27 L2 PF9 I/O FT_h1
TIM17_CH1N,
SPI5_MOSI,
SAI1_FS_B,
UART7_CTS,
TIM14_CH1,
OCTOSPIM_P1_IO1,
EVENTOUT
-
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 52/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
- - 24 - H3 K3 30 M3 - - - 22 L1 28 L1 PF10 I/O FT_h1
TIM16_BKIN, SAI1_D3,
PSSI_D15,
OCTOSPIM_P1_CLK,
DCMI_D11/PSSI_D11,
LCD_DE, EVENTOUT
-
13 G1 25 G11 H1 J1 31 L1 5 C1 12 23 G1 29 G1 PH0-
OSC_IN(PH0) I/O FT EVENTOUT OSC_IN
14 G2 26 H12 H2 K1 32 L2 6 D1 13 24 H1 30 H1
PH1-
OSC_OUT
(PH1)
I/O FT EVENTOUT OSC_OUT
15 F2 27 F10 G6 L1 33 K3 7 E1 14 25 J1 31 J1 NRST I/O RST - -
16 F3 28 G10 J1 L2 34 L3 8 F1 15 26 M2 32 M2 PC0 I/O FT_a
DFSDM1_CKIN0,
DFSDM1_DATIN4,
SAI2_FS_B, FMC_A25,
OTG_HS_ULPI_STP,
LCD_G2,
FMC_SDNWE,
LCD_R5, EVENTOUT
ADC12_INP10
17 F1 29 H11 J2 L3 35 M2 9 F2 16 27 M3 33 M3 PC1 I/O FT_ah0
TRACED0, SAI1_D1,
DFSDM1_DATIN0,
DFSDM1_CKIN4,
SPI2_MOSI/I2S2_SDO,
SAI1_SD_A,
SDMMC2_CK,
OCTOSPIM_P1_IO4,
MDIOS_MDC,
LCD_G5, EVENTOUT
ADC12_INP11,
ADC12_INN10,
TAMP_IN3,
WKUP5
- - - J12 H5
(3)
M1
(3) -J5
(3) 10 - - - - - - PC2 I/O FT_a
PWR_CSTOP,
DFSDM1_CKIN1,
SPI2_MISO/I2S2_SDI,
DFSDM1_CKOUT,
OCTOSPIM_P1_IO2,
OTG_HS_ULPI_DIR,
OCTOSPIM_P1_IO5,
FMC_SDNE0,
EVENTOUT
ADC12_INP12,
ADC12_INN11
18(4) F4(4) 30
(4) -K2
(3)
N1
(3) 36(4) N1
(3) -E2(4) 17(4) 28(4) M4(4) 34(4) M4(4) PC2_C ANA TT_a - ADC2_INP0,
ADC2_INN1
- - - G9 J4(3) M2(3) -N3(3) 11 - - - - - - PC3 I/O FT_a
PWR_CSLEEP,
DFSDM1_DATIN1,
SPI2_MOSI/I2S2_SDO,
OCTOSPIM_P1_IO0,
OTG_HS_ULPI_NXT,
OCTOSPIM_P1_IO6,
FMC_SDCKE0,
EVENTOUT
ADC12_INP13,
ADC12_INN12
19(4) G4(4) 31(4) -K1(3) N2(3) 37(4) N2(3) -F3(4) 18(4) 29(4) M5(4) 35(4) L4(4) PC3_C ANA TT_a - ADC2_INP1
20 - 32 H10 G1 E12 - K7 - - - 30 K4 36 J5 VDD S - -
21 - 33 H9 G2 F6 - R1 - - - - - - J6 VSS S - -
22 H2 34 K12 J3 N3 38 K5 12 G1 19 31 M1 37 M1 VSSA S - -
- - - - - L4 - K4 - - - - N1 - N1 VREF- S - -
23 J1 35 J11 L2 M3 39 L4 - - 20 32 P1 38 P1 VREF+ S - -
24 H1 36 J10 L1 M4 40 L5 13 H1 21 33 R1 39 R1 VDDA S - -
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 53/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
25 G3 37 K11 J5(3) P1(3) 41 P1(3) 14 G2 22 34 N3 40 N3 PA0 I/O FT_a
TIM2_CH1/TIM2_ETR,
TIM5_CH1, TIM8_ETR,
TIM15_BKIN,
SPI6_NSS/I2S6_WS,
USART2_CTS/
USART2_NSS,
UART4_TX,
SDMMC2_CMD,
SAI2_SD_B,
EVENTOUT
ADC1_INP16,
WKUP0
- - - - K3(3) R3(3) -P3(3) - - - - - - - PA0_C ANA TT_a - ADC1_INP0,
ADC1_INN1
26 J2 38 G8 K4(3) P2(3) 42 P2(3) 15 H2 23 35 N2 41 N2 PA1 I/O FT_ah1
TIM2_CH2, TIM5_CH2,
LPTIM3_OUT,
TIM15_CH1N,
USART2_RTS,
UART4_RX,
OCTOSPIM_P1_IO3,
SAI2_MCK_B,
OCTOSPIM_P1_DQS,
LCD_R2, EVENTOUT
ADC1_INP17,
ADC1_INN16
- - - - L3(3) P3(3) -R3(3) - - - - - - - PA1_C ANA TT_a - ADC1_INP1
27 H3 39 H8 N1 R2 43 R2 16 J2 24 36 P2 42 P2 PA2 I/O FT_a
TIM2_CH3, TIM5_CH3,
TIM15_CH1,
DFSDM2_CKIN1,
USART2_TX,
SAI2_SCK_B,
MDIOS_MDIO,
LCD_R1, EVENTOUT
ADC1_INP14,
WKUP1
- - - - N2 N4 - M4 - - - - F4 43 K4 PH2 I/O FT_h2
LPTIM1_IN2,
OCTOSPIM_P1_IO4,
SAI2_SCK_B,
FMC_SDCKE0,
LCD_R0, EVENTOUT
-
- - - - M1 G4 44 J7 - - - - - - - VDD S - - -
- - - L12 M2 F7 45 M1 - J1 - - F6 - K6 VSS S - - -
- - - - M3 R4 - N4 - - - - G4 44 J4 PH3 I/O FT_ah2
OCTOSPIM_P1_IO5,
SAI2_MCK_B,
FMC_SDNE0,
LCD_R1, EVENTOUT
-
- - - - - P4 - M5 - - - - H4 45 H4 PH4 I/O FT_fa
I2C2_SCL, LCD_G5,
OTG_HS_ULPI_NXT,
PSSI_D14, LCD_G4,
EVENTOUT
-
- - - - - R5 - P4 - - - - J4 46 J3 PH5 I/O FT_fa
I2C2_SDA, SPI5_NSS,
FMC_SDNWE,
EVENTOUT
-
28 G5 40 J9 N3 N5 46 R4 17 K2 25 37 R2 47 R2 PA3 I/O FT_ah1
TIM2_CH4, TIM5_CH4,
OCTOSPIM_P1_CLK,
TIM15_CH2,
I2S6_MCK,
USART2_RX, LCD_B2,
OTG_HS_ULPI_D0,
LCD_B5, EVENTOUT
ADC1_INP15
29 - 41 - M4 F8 47 K6 18 E6 26 38 L4 48 L5 VSS S - - -
30 - 42 - N4 H12 48 G7 19 K1 27 39 - 49 K5 VDD S - - -
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 54/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
31 K1 43 K10 H6 P5 49 L6 20 G3 28 40 N4 50 N4 PA4 I/O TT_a
TIM5_ETR, SPI1_NSS/
I2S1_WS, SPI3_NSS/
I2S3_WS,
USART2_CK,
SPI6_NSS/I2S6_WS,
DCMI_HSYNC/
PSSI_DE,
LCD_VSYNC,
EVENTOUT
ADC1_INP18,
DAC1_OUT1
32 K2 44 L11 L4 P6 50 N5 21 H3 29 41 P4 51 P4 PA5 I/O TT_ah0
PWR_NDSTOP2,
TIM2_CH1/TIM2_ETR,
TIM8_CH1N,
SPI1_SCK/I2S1_CK,
SPI6_SCK/I2S6_CK,
OTG_HS_ULPI_CK,
PSSI_D14, LCD_R4,
EVENTOUT
ADC1_INP19,
ADC1_INN18,
DAC1_OUT2
33 J3 45 G7 K5 R7 51 P5 22 J3 30 42 P3 52 P3 PA6 I/O TT_ah1
TIM1_BKIN,
TIM3_CH1,
TIM8_BKIN,
SPI1_MISO/I2S1_SDI,
OCTOSPIM_P1_IO3,
SPI6_MISO/I2S6_SDI,
TIM13_CH1,
TIM8_BKIN_COMP12,
MDIOS_MDC,
TIM1_BKIN_COMP12,
DCMI_PIXCLK/
PSSI_PDCK, LCD_G2,
EVENTOUT
ADC12_INP3,
DAC2_OUT1
34 K3 46 K9 J6 N6 52 R5 23 K3 31 43 R3 53 R3 PA7 I/O FT_ah1
TIM1_CH1N,
TIM3_CH2,
TIM8_CH1N,
DFSDM2_DATIN1,
SPI1_MOSI/I2S1_SDO,
SPI6_MOSI/I2S6_SDO,
TIM14_CH1,
OCTOSPIM_P1_IO2,
FMC_SDNWE,
LCD_VSYNC,
EVENTOUT
ADC12_INP7,
ADC12_INN3,
OPAMP1_VINM
35 H4 47 H7 K6 R6 53 M6 24 G4 32 44 N5 54 N5 PC4 I/O FT_a
DFSDM1_CKIN2,
I2S1_MCK,
SPDIFRX1_IN2,
FMC_SDNE0,
LCD_R7, EVENTOUT
ADC12_INP4,
OPAMP1_VOUT,
COMP1_INM
36 J4 48 J8 N5 M7 54 N6 25 H4 33 45 P5 55 P5 PC5 I/O FT_ah1
SAI1_D3,
DFSDM1_DATIN2,
PSSI_D15,
SPDIFRX1_IN3,
OCTOSPIM_P1_DQS,
FMC_SDCKE0,
COMP1_OUT,
LCD_DE, EVENTOUT
ADC12_INP8,
ADC12_INN4,
OPAMP1_VINM
- - - L10 N7 K4 - - - - - - - - L7 VDD S - - -
- - - L9 M7 F9 - - - - - - M9 - L6 VSS S - - -
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 55/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
37 K4 49 K8 M5 R8 55 P6 26 J4 34 46 R5 56 R5 PB0 I/O FT_ah0
TIM1_CH2N,
TIM3_CH3,
TIM8_CH2N,
DFSDM2_CKOUT,
DFSDM1_CKOUT,
UART4_CTS, LCD_R3,
OTG_HS_ULPI_D1,
OCTOSPIM_P1_IO1,
LCD_G1, EVENTOUT
ADC12_INP9,
ADC12_INN5,
OPAMP1_VINP,
COMP1_INP
38 K5 50 J7 L5 M8 56 L7 27 K4 35 47 R4 57 R4 PB1 I/O FT_ah0
TIM1_CH3N,
TIM3_CH4,
TIM8_CH3N,
DFSDM1_DATIN1,
LCD_R6,
OTG_HS_ULPI_D2,
OCTOSPIM_P1_IO0,
LCD_G0, EVENTOUT
ADC12_INP5,
COMP1_INM
39 J5 51 L8 L6 P7 57 R6 28 G5 36 48 M6 58 M5 PB2 I/O FT_ah1
RTC_OUT2, SAI1_D1,
DFSDM1_CKIN1,
SAI1_SD_A,
SPI3_MOSI/I2S3_SDO,
OCTOSPIM_P1_CLK,
OCTOSPIM_P1_DQS,
EVENTOUT
COMP1_INP
- - - - - - - M7 - - - - - - G4 PI15 I/O FT LCD_G2, LCD_R0,
EVENTOUT -
- - - - - - - N7 - - - - - - R6 PJ0 I/O FT LCD_R7, LCD_R1,
EVENTOUT -
- - - - - - - P7 - - - - - - R7 PJ1 I/O FT_ah1 OCTOSPIM_P2_IO4,
LCD_R2, EVENTOUT -
- - - - - - - R7 - - - - - - P7 PJ2 I/O FT_ah1 OCTOSPIM_P2_IO5,
LCD_R3, EVENTOUT -
- - - - - - - R8 - - - - - - N8 PJ3 I/O FT UART9_RTS, LCD_R4,
EVENTOUT -
- - - - - - - P8 - - - - - - M9 PJ4 I/O FT UART9_CTS, LCD_R5,
EVENTOUT -
- - 52 - M6 N7 58 N8 - - - 49 R6 59 P8 PF11 I/O FT_ah1
SPI5_MOSI,
OCTOSPIM_P1_NCLK,
SAI2_SD_B,
FMC_SDNRAS,
DCMI_D12/PSSI_D12,
EVENTOUT
ADC1_INP2
- - - - N6 P11 59 R9 - - - 50 P6 60 M6 PF12 I/O FT_ah2 OCTOSPIM_P2_DQS,
FMC_A6, EVENTOUT
ADC1_INP6,
ADC1_INN2
- - - - - F10 - K8 - - - 51 M8 61 K7 VSS S - - -
- - - - - L12 - K9 - - - 52 N8 62 L8 VDD S - - -
- - - - G7 N11 60 M8 - - - 53 N6 63 N6 PF13 I/O FT_ah2
DFSDM1_DATIN6,
I2C4_SMBA, FMC_A7,
EVENTOUT
ADC2_INP2
- - 53 K7 H7 R10 61 P9 - - - 54 R7 64 P6 PF14 I/O FT_fah2
DFSDM1_CKIN6,
I2C4_SCL, FMC_A8,
EVENTOUT
ADC2_INP6,
ADC2_INN2
- - 54 - J7 N10 62 N9 - - - 55 P7 65 M8 PF15 I/O FT_fh2 I2C4_SDA, FMC_A9,
EVENTOUT -
- - - - K7 P8 63 R10 - - - 56 N7 66 N7 PG0 I/O FT_h2
OCTOSPIM_P2_IO4,
UART9_RX, FMC_A10,
EVENTOUT
-
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 56/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
- - 55 - - F12 64 - - - - - K8 - - VSS S - - -
- - 56 - - M5 65 - - - - - N10 - - VDD S - - -
- - - - L7 N9 66 P10 - - - 57 M7 67 M7 PG1 I/O FT_h2
OCTOSPIM_P2_IO5,
UART9_TX, FMC_A11,
EVENTOUT
OPAMP2_VINM
40 H5 57 L7 G8 P9 67 M9 - H5 37 58 R8 68 R8 PE7 I/O FT_ah2
TIM1_ETR,
DFSDM1_DATIN2,
UART7_Rx,
OCTOSPIM_P1_IO4,
FMC_D4/FMC_DA4,
EVENTOUT
OPAMP2_VOUT,
COMP2_INM
41 J6 58 H6 H8 N8 68 R11 - J5 38 59 P8 69 N9 PE8 I/O FT_ah2
TIM1_CH1N,
DFSDM1_CKIN2,
UART7_Tx,
OCTOSPIM_P1_IO5,
FMC_D5/FMC_DA5,
COMP2_OUT,
EVENTOUT
OPAMP2_VINM
- K6 59 J6 J8 R11 69 P11 - K5 39 60 P9 70 P9 PE9 I/O FT_ah2
TIM1_CH1,
DFSDM1_CKOUT,
UART7_RTS,
OCTOSPIM_P1_IO6,
FMC_D6/FMC_DA6,
EVENTOUT
OPAMP2_VINP,
COMP2_INP
- - - K6 M11 G6 70 K10 - - - 61 K9 71 K8 VSS S - - -
- - - L6 N11 M9 71 J10 - - - 62 N9 72 L9 VDD S - - -
- H6 60 G6 M8 R9 72 N11 - G6 40 63 R9 73 R9 PE10 I/O FT_ah2
TIM1_CH2N,
DFSDM1_DATIN4,
UART7_CTS,
OCTOSPIM_P1_IO7,
FMC_D7/FMC_DA7,
EVENTOUT
COMP2_INM
- - 61 J5 N8 R12 73 R12 - H6 41 64 P10 74 P10 PE11 I/O FT_ah2
TIM1_CH2,
DFSDM1_CKIN4,
SPI4_NSS,
SAI2_SD_B,
OCTOSPIM_P1_NCS,
FMC_D8/FMC_DA8,
LCD_G3, EVENTOUT
COMP2_INP
- - 62 K5 L8 P12 74 L9 - J6 42 65 R10 75 R10 PE12 I/O FT_h2
TIM1_CH3N,
DFSDM1_DATIN5,
SPI4_SCK,
SAI2_SCK_B,
FMC_D9/FMC_DA9,
COMP1_OUT,
LCD_B4, EVENTOUT
-
- - 63 L5 K8 P13 75 M10 - K6 43 66 N11 76 R12 PE13 I/O FT_h2
TIM1_CH3,
DFSDM1_CKIN5,
SPI4_MISO,
SAI2_FS_B, FMC_D10/
FMC_DA10,
COMP2_OUT,
LCD_DE, EVENTOUT
-
- - 64 H5 J9 M12 76 N10 - G7 44 67 P11 77 P11 PE14 I/O FT_h2
TIM1_CH4,
SPI4_MOSI,
SAI2_MCK_B,
FMC_D11/FMC_DA11,
LCD_CLK, EVENTOUT
-
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 57/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
- - 65 G5 N9 P14 77 P12 - H7 45 68 R11 78 R11 PE15 I/O FT_h2
TIM1_BKIN,
USART10_CK,
FMC_D12/FMC_DA12,
TIM1_BKIN_COMP12,
LCD_R7, EVENTOUT
-
42 K7 66 F5 L9 N12 78 R13 29 J7 46 69 R12 79 P12 PB10 I/O FT_f
TIM2_CH3,
LPTIM2_IN1,
I2C2_SCL, SPI2_SCK/
I2S2_CK,
DFSDM1_DATIN7,
USART3_TX,
OCTOSPIM_P1_NCS,
OTG_HS_ULPI_D3,
LCD_G4, EVENTOUT
-
43 J7 67 J4 M9 P10 79 P13 - K7 47 70 R13 80 R13 PB11 I/O FT_f
TIM2_CH4,
LPTIM2_ETR,
I2C2_SDA,
DFSDM1_CKIN7,
USART3_RX,
OTG_HS_ULPI_D4,
LCD_G5, EVENTOUT
-
44 G6 68 L4 N10 R13 80 L8 30 F8 48 71 M10 81 L11 VCAP S - - -
45 D5 69 K4 - M10 81 - 31 - 49 - - - K9 VSS S - - -
46 E6 70 K3 M10 R14 82 L10 - - - - - - - VDDLDO S - - -
47 - 71 L1 - - - - 32 - 50 72 J12 82 L10 VDD S - - -
- - - - - - - N12 - - - - - - M14 PJ5 I/O FT LCD_R6, EVENTOUT -
- - - - - P15 - M11 - - - - M11 83 P13 PH6 I/O FT
TIM12_CH1,
I2C2_SMBA,
SPI5_SCK,
FMC_SDNE1,
DCMI_D8/PSSI_D8,
EVENTOUT
-
- - - - - M11 - R14 - - - - N12 84 N13 PH7 I/O FT_f
I2C3_SCL,
SPI5_MISO,
FMC_SDCKE1,
DCMI_D9/PSSI_D9,
EVENTOUT
-
- - - - - N13 - P14 - - - - M12 85 P14 PH8 I/O FT_fh2
TIM5_ETR, I2C3_SDA,
FMC_D16,
DCMI_HSYNC/
PSSI_DE, LCD_R2,
EVENTOUT
-
- - - - - M14 - N13 - - - - M13 86 N14 PH9 I/O FT_h2
TIM12_CH2,
I2C3_SMBA,
FMC_D17, DCMI_D0/
PSSI_D0, LCD_R3,
EVENTOUT
-
- - - - K9 N14 - M12 - - - - L13 87 P15 PH10 I/O FT_h2
TIM5_CH1,
I2C4_SMBA,
FMC_D18, DCMI_D1/
PSSI_D1, LCD_R4,
EVENTOUT
-
- - - - L10 M13 - P15 - - - - L12 88 N15 PH11 I/O FT_fh2
TIM5_CH2, I2C4_SCL,
FMC_D19, DCMI_D2/
PSSI_D2, LCD_R5,
EVENTOUT
-
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 58/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
- - - - K10 N15 - L11 - - - - K12 89 M15 PH12 I/O FT_fh2
TIM5_CH3, I2C4_SDA,
FMC_D20, DCMI_D3/
PSSI_D3, LCD_R6,
EVENTOUT
-
- E7 - - L12 G10 83 R15 - - - - H12 90 K10 VSS S - - -
- - - L3 L13 - 84 - - - - - G13 91 K11 VDD S - - -
48 K8 72 L2 N12 M15 85 N14 33 K8 51 73 P12 92 L13 PB12 I/O FT_h1
TIM1_BKIN,
OCTOSPIM_P1_NCLK,
I2C2_SMBA,
SPI2_NSS/I2S2_WS,
DFSDM1_DATIN1,
USART3_CK,
FDCAN2_RX,
OTG_HS_ULPI_D5,
DFSDM2_DATIN1,
TIM1_BKIN_COMP12,
UART5_RX,
EVENTOUT
-
49 J8 73 K2 L11 L15 86 M13 34 J8 52 74 P13 93 K14 PB13 I/O FT_h0
TIM1_CH1N,
LPTIM2_OUT,
DFSDM2_CKIN1,
SPI2_SCK/I2S2_CK,
DFSDM1_CKIN1,
USART3_CTS/
USART3_NSS,
FDCAN2_TX,
OTG_HS_ULPI_D6,
SDMMC1_D0,
DCMI_D2/PSSI_D2,
UART5_TX,
EVENTOUT
-
50 K9 74 J3 N13 K15 87 M14 35 H10 53 75 R14 94 R14 PB14 I/O FT_h0
TIM1_CH2N,
TIM12_CH1,
TIM8_CH2N,
USART1_TX,
SPI2_MISO/I2S2_SDI,
DFSDM1_DATIN2,
USART3_RTS,
UART4_RTS,
SDMMC2_D0,
LCD_CLK, EVENTOUT
-
51 K10 75 H4 M13 K14 88 M15 36 G10 54 76 R15 95 R15 PB15 I/O FT_h0
RTC_REFIN,
TIM1_CH3N,
TIM12_CH2,
TIM8_CH3N,
USART1_RX,
SPI2_MOSI/I2S2_SDO,
DFSDM1_CKIN2,
UART4_CTS,
SDMMC2_D1,
LCD_G7, EVENTOUT
-
52 J9 76 H3 M12 L14 89 L12 - K9 55 77 P15 96 L15 PD8 I/O FT_h2
DFSDM1_CKIN3,
USART3_TX,
SPDIFRX1_IN1,
FMC_D13/FMC_DA13,
EVENTOUT
-
53 H8 77 J2 K11 K13 90 N15 - J9 56 78 P14 97 L14 PD9 I/O FT_h2
DFSDM1_DATIN3,
USART3_RX,
FMC_D14/FMC_DA14,
EVENTOUT
-
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 59/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
54 J10 78 K1 K12 L13 91 L13 - H9 57 79 N15 98 K15 PD10 I/O FT_h2
DFSDM1_CKOUT,
DFSDM2_CKOUT,
USART3_CK,
FMC_D15/FMC_DA15,
LCD_B3, EVENTOUT
-
- - 79 - - - 92 - - F4 - - - - - VDD S - - -
- - 80 - - H6 93 - - - - - J10 - - VSS S - - -
55 H7 81 G4 J10 J13 94 L14 - G9 58 80 N14 99 N10 PD11 I/O FT_h2
LPTIM2_IN2,
I2C4_SMBA,
USART3_CTS/
USART3_NSS,
OCTOSPIM_P1_IO0,
SAI2_SD_A,
FMC_A16/FMC_CLE,
EVENTOUT
-
56 H9 82 G3 K13 J15 95 L15 - K10 59 81 N13 100 M10 PD12 I/O FT_fh2
LPTIM1_IN1,
TIM4_CH1,
LPTIM2_IN1,
I2C4_SCL,
USART3_RTS,
OCTOSPIM_P1_IO1,
SAI2_FS_A, FMC_A17/
FMC_ALE, DCMI_D12/
PSSI_D12, EVENTOUT
-
57 H10 83 H2 J11 H15 96 K11 - J10 60 82 M15 101 M11 PD13 I/O FT_fh2
LPTIM1_OUT,
TIM4_CH2, I2C4_SDA,
OCTOSPIM_P1_IO3,
SAI2_SCK_A,
UART9_RTS,
FMC_A18, DCMI_D13/
PSSI_D13, EVENTOUT
-
58 - - - H12 R1 - H7 - - - 83 J9 102 J10 VSS S - - -
59 - - - H13 - - - - - - 84 J13 103 J11 VDD S - - -
60 G7 84 J1 J13 H14 97 K12 - H8 61 85 M14 104 L12 PD14 I/O FT_h2
TIM4_CH3,
UART8_CTS,
UART9_RX, FMC_D0/
FMC_DA0, EVENTOUT
-
61 G8 85 H1 J12 J12 98 K13 - G8 62 86 L14 105 K13 PD15 I/O FT_h2
TIM4_CH4,
UART8_RTS,
UART9_TX, FMC_D1/
FMC_DA1, EVENTOUT
-
- - - - - - - K14 - - - - - - K12 PJ6 I/O FT TIM8_CH2, LCD_R7,
EVENTOUT -
- - - - - - - K15 - - - - - - J12 PJ7 I/O FT TRGIN, TIM8_CH2N,
LCD_G0, EVENTOUT -
- - - G1 - - 99 - - - - - - - - VDD S - - -
- - - G2 - D6 100 H10 - - - - - - - VSS S - - -
- - - - - - 101 J15 - - - - - - H12 PJ8 I/O FT
TIM1_CH3N,
TIM8_CH1,
UART8_TX, LCD_G1,
EVENTOUT
-
- - - - - - 102 J14 - - - - - - J13 PJ9 I/O FT
TIM1_CH3,
TIM8_CH1N,
UART8_RX, LCD_G2,
EVENTOUT
-
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 60/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
- - - - - - 103 J13 - - - - - - H13 PJ10 I/O FT
TIM1_CH2N,
TIM8_CH2,
SPI5_MOSI, LCD_G3,
EVENTOUT
-
- - - - - - 104 J11 - - - - - - G12 PJ11 I/O FT
TIM1_CH2,
TIM8_CH2N,
SPI5_MISO, LCD_G4,
EVENTOUT
-
- - - - - - 105 G9 - - - - - - H11 VDD S - - -
- - - - - G7 106 H8 - - - - K10 - H10 VSS S - - -
- - - - - - 107 J12 - - - - - - G13 PK0 I/O FT
TIM1_CH1N,
TIM8_CH3, SPI5_SCK,
LCD_G5, EVENTOUT
-
- - - - - - 108 H15 - - - - - - F12 PK1 I/O FT
TIM1_CH1,
TIM8_CH3N,
SPI5_NSS, LCD_G6,
EVENTOUT
-
- - - - - - 109 H14 - - - - - - F13 PK2 I/O FT
TIM1_BKIN,
TIM8_BKIN,
TIM8_BKIN_COMP12,
TIM1_BKIN_COMP12,
LCD_G7, EVENTOUT
-
- - - - H9 G15 110 H13 - - - 87 L15 106 M13 PG2 I/O FT_h2
TIM8_BKIN,
TIM8_BKIN_COMP12,
FMC_A12, EVENTOUT
-
- - - - H10 H13 111 G15 - - - 88 K15 107 M12 PG3 I/O FT_h2
TIM8_BKIN2,
TIM8_BKIN2_COMP12,
FMC_A13, EVENTOUT
-
- - - - C12 H10 112 J8 - - - - G10 - - VSS S - - -
- - - - C13 - 113 J9 - - - - - - - VDD S - - -
- - - - F8 G14 114 H12 - - - 89 K14 108 N12 PG4 I/O FT_h2
TIM1_BKIN2,
TIM1_BKIN2_COMP12,
FMC_A14/FMC_BA0,
EVENTOUT
-
- - - - H11 F15 115 G14 - - - 90 K13 109 N11 PG5 I/O FT_h2 TIM1_ETR, FMC_A15/
FMC_BA1, EVENTOUT -
- - 86 - G9 F14 116 G13 - - - 91 J15 110 J15 PG6 I/O FT_h2
TIM17_BKIN,
OCTOSPIM_P1_NCS,
FMC_NE3, DCMI_D12/
PSSI_D12, LCD_R7,
EVENTOUT
-
- - 87 - G10 G13 117 G12 - - - 92 J14 111 J14 PG7 I/O FT_h2
SAI1_MCLK_A,
USART6_CK,
OCTOSPIM_P2_DQS,
FMC_INT, DCMI_D13/
PSSI_D13, LCD_CLK,
EVENTOUT
-
- - 88 - G11 G12 118 F15 - - - 93 H14 112 H14 PG8 I/O FT_h2
TIM8_ETR, SPI6_NSS/
I2S6_WS,
USART6_RTS,
SPDIFRX1_IN2,
FMC_SDCLK,
LCD_G7, EVENTOUT
-
- - 89 - - J6 119 H9 - - - 94 H8 113 G10 VSS S - - -
- F7 90 F2 G12 E15 120 D15 - - - - - - - VDD50USB S - - -
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 61/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
- E8 91 F1 G13 F13 121 H11 - F6 - 95 H13 114 G11 VDD33USB S - - -
- - 92 - - - - G10 - - - - - - - VDD S - - -
62 F8 93 F3 F9 E14 122 F14 37 F10 63 96 H15 115 H15 PC6 I/O FT_h0
TIM3_CH1, TIM8_CH1,
DFSDM1_CKIN3,
I2S2_MCK,
USART6_TX,
SDMMC1_D0DIR,
FMC_NWAIT,
SDMMC2_D6,
SDMMC1_D6,
DCMI_D0/PSSI_D0,
LCD_HSYNC,
EVENTOUT
SWPMI_IO
63 G9 94 E1 F10 D15 123 E15 38 E10 64 97 G15 116 G15 PC7 I/O FT_h0
TRGIO, TIM3_CH2,
TIM8_CH2,
DFSDM1_DATIN3,
I2S3_MCK,
USART6_RX,
SDMMC1_D123DIR,
FMC_NE1,
SDMMC2_D7,
SWPMI_TX,
SDMMC1_D7,
DCMI_D1/PSSI_D1,
LCD_G6, EVENTOUT
-
64 G10 95 - F12 D14 124 F13 - F9 65 98 G14 117 G14 PC8 I/O FT_h0
TRACED1, TIM3_CH3,
TIM8_CH3,
USART6_CK,
UART5_RTS,
FMC_NE2/FMC_NCE,
FMC_INT, SWPMI_RX,
SDMMC1_D0,
DCMI_D2/PSSI_D2,
EVENTOUT
-
65 F9 96 E2 F11 E13 125 E14 39 E9 66 99 F14 118 F14 PC9 I/O FT_fh0
MCO2, TIM3_CH4,
TIM8_CH4, I2C3_SDA,
I2S_CKIN,
UART5_CTS,
OCTOSPIM_P1_IO0,
LCD_G3,
SWPMI_SUSPEND,
SDMMC1_D1,
DCMI_D3/PSSI_D3,
LCD_B2, EVENTOUT
-
- - - - - J7 - D14 - - - - F10 - - VSS S - - -
- - - - - - 126 - - - - - - - - VDD S - - -
66 F10 97 E3 E12 B14 127 G11 40 D9 67 100 F15 119 F15 PA8 I/O FT_fh0
MCO1, TIM1_CH1,
TIM8_BKIN2,
I2C3_SCL,
USART1_CK,
OTG_HS_SOF,
UART7_RX,
TIM8_BKIN2_COMP12,
LCD_B3, LCD_R6,
EVENTOUT
-
67 E9 98 F4 E11 D13 128 F12 41 C9 68 101 E15 120 E15 PA9 I/O FT_u
TIM1_CH2,
LPUART1_TX,
I2C3_SMBA,
SPI2_SCK/I2S2_CK,
USART1_TX,
DCMI_D0/PSSI_D0,
LCD_R5, EVENTOUT
OTG_HS_VBUS
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 62/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
68 E10 99 D2 E10 C14 129 E13 42 D10 69 102 D15 121 D15 PA10 I/O FT_u
TIM1_CH3,
LPUART1_RX,
USART1_RX,
OTG_HS_ID,
MDIOS_MDIO,
LCD_B4, DCMI_D1/
PSSI_D1, LCD_B1,
EVENTOUT
-
69 D10 100 D1 F13 C15 130 C15 43 C10 70 103 C15 122 C15 PA11 I/O FT_u
TIM1_CH4,
LPUART1_CTS,
SPI2_NSS/I2S2_WS,
UART4_RX,
USART1_CTS/
USART1_NSS,
FDCAN1_RX, LCD_R4,
EVENTOUT
OTG_HS_DM
70 D9 101 C1 E13 B15 131 C14 44 B10 71 104 B15 123 B15 PA12 I/O FT_u
TIM1_ETR,
LPUART1_RTS,
SPI2_SCK/I2S2_CK,
UART4_TX,
USART1_RTS,
SAI2_FS_B,
FDCAN1_TX, LCD_R5,
EVENTOUT
OTG_HS_DP
71 C10 102 D3 D11 B13 132 E12 45 A10 72 105 A15 124 A15 PA13(JTMS/
SWDIO) I/O FT JTMS/SWDIO,
EVENTOUT -
72 D8 103 C2 D13 A14 133 F11 46 E7 73 106 F13 125 E11 VCAP S - - -
73 - 104 A1 B10 M6 134 F10 47 E5 74 107 F12 126 F10 VSS S - - -
74 - 105 B1 D12 A13 135 E10 - - - - - - - VDDLDO S - - -
75 - 106 - A10 - 136 F9 48 F5 75 108 - 127 F11 VDD S - - -
76 - - - - - - - - - - - - - - VDD33USB S - - -
- - - - B13 C13 - D13 - - - - E12 128 E12 PH13 I/O FT_h2
TIM8_CH1N,
UART4_TX,
FDCAN1_TX,
FMC_D21, LCD_G2,
EVENTOUT
-
- - - - A13 B12 - B15 - - - - E13 129 E13 PH14 I/O FT_h2
TIM8_CH2N,
UART4_RX,
FDCAN1_RX,
FMC_D22, DCMI_D4/
PSSI_D4, LCD_G3,
EVENTOUT
-
- - - - - D12 - B14 - - - - D13 130 D13 PH15 I/O FT_h2
TIM8_CH3N,
FMC_D23, DCMI_D11/
PSSI_D11, LCD_G4,
EVENTOUT
-
- - - - - - - C13 - - - - E14 131 E14 PI0 I/O FT_h2
TIM5_CH4, SPI2_NSS/
I2S2_WS, FMC_D24,
DCMI_D13/PSSI_D13,
LCD_G5, EVENTOUT
-
- - - B2 - J9 - A15 - - - - G8 - - VSS S - - -
- - - - - - - E11 - - - - D14 132 D14 PI1 I/O FT_h2
TIM8_BKIN2,
SPI2_SCK/I2S2_CK,
TIM8_BKIN2_COMP12,
FMC_D25, DCMI_D8/
PSSI_D8, LCD_G6,
EVENTOUT
-
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 63/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
- - - - - - - D12 - - - - C14 133 C14 PI2 I/O FT_h2
TIM8_CH4,
SPI2_MISO/I2S2_SDI,
FMC_D26, DCMI_D9/
PSSI_D9, LCD_G7,
EVENTOUT
-
- - - - - - - A14 - - - - C13 134 C13 PI3 I/O FT_h2
TIM8_ETR,
SPI2_MOSI/I2S2_SDO,
FMC_D27, DCMI_D10/
PSSI_D10, EVENTOUT
-
- - - - - J10 137 F8 - - - - D9 135 F9 VSS S - - -
- - - A2 - - - - - - - - C9 136 E10 VDD S - - -
77 C9 107 E4 B12 A12 138 B13 49 A9 76 109 A14 137 A14 PA14(JTCK/
SWCLK) I/O FT JTCK/SWCLK,
EVENTOUT -
78 C8 108 C3 C11 A11 139 C12 50 A8 77 110 A13 138 A13 PA15(JTDI) I/O FT
JTDI, TIM2_CH1/
TIM2_ETR,
HDMI_CEC,
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
SPI6_NSS/I2S6_WS,
UART4_RTS, LCD_R3,
UART7_TX, LCD_B6,
EVENTOUT
-
79 B10 109 A3 A12 C12 140 A13 51 B9 78 111 B14 139 B14 PC10 I/O FT_h0
DFSDM1_CKIN5,
DFSDM2_CKIN0,
SPI3_SCK/I2S3_CK,
USART3_TX,
UART4_TX,
OCTOSPIM_P1_IO1,
LCD_B1, SWPMI_RX,
SDMMC1_D2,
DCMI_D8/PSSI_D8,
LCD_R2, EVENTOUT
-
80 B9 110 D4 B11 C11 141 D11 52 B8 79 112 B13 140 B13 PC11 I/O FT_h0
DFSDM1_DATIN5,
DFSDM2_DATIN0,
SPI3_MISO/I2S3_SDI,
USART3_RX,
UART4_RX,
OCTOSPIM_P1_NCS,
SDMMC1_D3,
DCMI_D4/PSSI_D4,
LCD_B4, EVENTOUT
-
81 A10 111 B3 A11 B11 142 B12 53 C8 80 113 A12 141 A12 PC12 I/O FT_h0
TRACED3,
TIM15_CH1,
DFSDM2_CKOUT,
SPI6_SCK/I2S6_CK,
SPI3_MOSI/I2S3_SDO,
USART3_CK,
UART5_TX,
SDMMC1_CK,
DCMI_D9/PSSI_D9,
LCD_R6, EVENTOUT
-
- - - - - J14 - - - - - - G7 - - VSS S - - -
82 C7 112 C4 D10 C10 143 C11 - D8 81 114 B12 142 B12 PD0 I/O FT_h2
DFSDM1_CKIN6,
UART4_RX,
FDCAN1_RX,
UART9_CTS, FMC_D2/
FMC_DA2, LCD_B1,
EVENTOUT
-
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 64/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
83 B8 113 E5 C10 A10 144 A12 - E8 82 115 C12 143 C12 PD1 I/O FT_h2
DFSDM1_DATIN6,
UART4_TX,
FDCAN1_TX, FMC_D3/
FMC_DA3, EVENTOUT
-
84 A9 114 D5 E9 B10 145 B11 54 B7 83 116 D12 144 D12 PD2 I/O FT_h0
TRACED2, TIM3_ETR,
TIM15_BKIN,
UART5_RX, LCD_B7,
SDMMC1_CMD,
DCMI_D11/PSSI_D11,
LCD_B2, EVENTOUT
-
85 A8 115 A4 D9 A9 146 D10 - C7 84 117 D11 145 C11 PD3 I/O FT_h2
DFSDM1_CKOUT,
SPI2_SCK/I2S2_CK,
USART2_CTS/
USART2_NSS,
FMC_CLK, DCMI_D5/
PSSI_D5, LCD_G7,
EVENTOUT
-
86 B7 116 B4 C9 C9 147 A11 - D7 85 118 D10 146 D11 PD4 I/O FT_h1
USART2_RTS,
OCTOSPIM_P1_IO4,
FMC_NOE,
EVENTOUT
-
87 D7 117 C5 A9 B9 148 C10 - B6 86 119 C11 147 C10 PD5 I/O FT_h1
USART2_TX,
OCTOSPIM_P1_IO5,
FMC_NWE,
EVENTOUT
-
- - 118 - - K2 - - - - - 120 G9 148 F8 VSS S - - -
- - 119 - - - - - - - - 121 - 149 - VDDMMC S - - -
88 - - - - - - - - - - - - - - VDD S - - -
- A7 120 F6 B9 D9 149 B10 - C6 87 122 B11 150 B11 PD6 I/O FT_sh3
SAI1_D1,
DFSDM1_CKIN4,
DFSDM1_DATIN1,
SPI3_MOSI/I2S3_SDO,
SAI1_SD_A,
USART2_RX,
OCTOSPIM_P1_IO6,
SDMMC2_CK,
FMC_NWAIT,
DCMI_D10/PSSI_D10,
LCD_B2, EVENTOUT
-
- C6 121 E6 D8 B8 150 A10 - D6 88 123 A11 151 A11 PD7 I/O FT_sh3
DFSDM1_DATIN4,
SPI1_MOSI/I2S1_SDO,
DFSDM1_CKIN1,
USART2_CK,
SPDIFRX1_IN0,
OCTOSPIM_P1_IO7,
SDMMC2_CMD,
FMC_NE1, EVENTOUT
-
- - - - - - - E9 - - - - - - B10 PJ12 I/O FT TRGOUT, LCD_G3,
LCD_B0, EVENTOUT -
- - - - - - - D9 - - - - - - B9 PJ13 I/O FT LCD_B4, LCD_B1,
EVENTOUT -
- - - - - - - C9 - - - - - - C9 PJ14 I/O FT LCD_B2, EVENTOUT -
- - - - - - - B9 - - - - - - D10 PJ15 I/O FT LCD_B3, EVENTOUT -
- - - A5 - K6 151 - - - - - H7 - - VSS S - - -
- - - B5 A6 D5 152 E8 - - - - C8 - E9 VDDMMC S - - -
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 65/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
- - 122 D6 C8 A8 153 A9 - - - 124 C10 152 D9 PG9 I/O FT_sh3
SPI1_MISO/I2S1_SDI,
USART6_RX,
SPDIFRX1_IN3,
OCTOSPIM_P1_IO6,
SAI2_FS_B,
SDMMC2_D0,
FMC_NE2/FMC_NCE,
DCMI_VSYNC/
PSSI_RDY,
EVENTOUT
-
- - 123 A6 A8 C8 154 A8 - - - 125 B10 153 C8 PG10 I/O FT_sh3
OCTOSPIM_P2_IO6,
SPI1_NSS/I2S1_WS,
LCD_G3, SAI2_SD_B,
SDMMC2_D1,
FMC_NE3, DCMI_D2/
PSSI_D2, LCD_B2,
EVENTOUT
-
- - 124 B6 B8 A7 155 B8 - - - 126 B9 154 B8 PG11 I/O FT_sh3
LPTIM1_IN2,
SPI1_SCK/I2S1_CK,
SPDIFRX1_IN0,
OCTOSPIM_P2_IO7,
SDMMC2_D2,
USART10_RX,
DCMI_D3/PSSI_D3,
LCD_B3, EVENTOUT
-
- - 125 C6 E8 D8 156 C8 - - - 127 B8 155 C7 PG12 I/O FT_sh3
LPTIM1_IN1,
OCTOSPIM_P2_NCS,
SPI6_MISO/I2S6_SDI,
USART6_RTS,
SPDIFRX1_IN1,
LCD_B4,
SDMMC2_D3,
USART10_TX,
FMC_NE4, LCD_B1,
EVENTOUT
-
- - 126 D7 D7 B7 157 D8 - - - 128 A8 156 B3 PG13 I/O FT_sh3
TRACED0,
LPTIM1_OUT,
SPI6_SCK/I2S6_CK,
USART6_CTS/
USART6_NSS,
SDMMC2_D6,
USART10_CTS/
USART10_NSS,
FMC_A24, LCD_R0,
EVENTOUT
-
- - 127 C7 C7 C7 158 A7 - - - 129 A7 157 A4 PG14 I/O FT_sh3
TRACED1,
LPTIM1_ETR,
SPI6_MOSI/I2S6_SDO,
USART6_TX,
OCTOSPIM_P1_IO7,
SDMMC2_D7,
USART10_RTS,
FMC_A25, LCD_B0,
EVENTOUT
-
- - - - - K7 159 - - - - 130 H6 158 F7 VSS S - - -
- - - A7 - - 160 - - - - 131 C7 159 E8 VDD S - - -
- - - - - - - B7 - - - - - - D8 PK3 I/O FT_h1 OCTOSPIM_P2_IO6,
LCD_B4, EVENTOUT -
- - - - - - - C7 - - - - - - D7 PK4 I/O FT_h1 OCTOSPIM_P2_IO7,
LCD_B5, EVENTOUT -
- - - - - - - A6 - - - - - - C6 PK5 I/O FT_h1 OCTOSPIM_P2_NCS,
LCD_B6, EVENTOUT -
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 66/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
- - - - - - - B6 - - - - - - C5 PK6 I/O FT_h1 OCTOSPIM_P2_DQS,
LCD_B7, EVENTOUT -
- - - - - - - D7 - - - - - - C4 PK7 I/O FT LCD_DE, EVENTOUT -
- - 128 B7 - K8 - G8 - - - - - - - VSS S - - -
- - 129 - - - - - - - - - - - G5 VDD S - - -
- - - B8 - - - - - - - - - - - VDDMMC - - -
- - - - E7 D7 161 A5 - - - 132 B7 160 B7 PG15 I/O FT_h1
USART6_CTS/
USART6_NSS,
OCTOSPIM_P2_DQS,
USART10_CK,
FMC_SDNCAS,
DCMI_D13/PSSI_D13,
EVENTOUT
-
89 B6 130 A8 F7 A6 162 C6 55 A7 89 133 A10 161 A10 PB3(JTDO/
TRACESWO) I/O FT_h0
JTDO/TRACESWO,
TIM2_CH2, SPI1_SCK/
I2S1_CK, SPI3_SCK/
I2S3_CK, SPI6_SCK/
I2S6_CK,
SDMMC2_D2,
CRS_SYNC,
UART7_RX,
EVENTOUT
-
90 C5 131 E7 B6 B6 163 B5 56 A6 90 134 A9 162 A9 PB4(NJTRST) I/O FT_h0
NJTRST, TIM16_BKIN,
TIM3_CH1,
SPI1_MISO/I2S1_SDI,
SPI3_MISO/I2S3_SDI,
SPI2_NSS/I2S2_WS,
SPI6_MISO/I2S6_SDI,
SDMMC2_D3,
UART7_TX,
EVENTOUT
-
91 A6 132 F7 C6 C6 164 E7 57 C5 91 135 A6 163 A8 PB5 I/O FT_h0
TIM17_BKIN,
TIM3_CH2,
I2C1_SMBA,
SPI1_MOSI/I2S1_SDO,
I2C4_SMBA,
SPI3_MOSI/I2S3_SDO,
SPI6_MOSI/I2S6_SDO,
FDCAN2_RX,
OTG_HS_ULPI_D7,
LCD_B5,
FMC_SDCKE1,
DCMI_D10/PSSI_D10,
UART5_RX,
EVENTOUT
-
92 D4 133 C8 A5 A5 165 A4 58 B5 92 136 B6 164 B6 PB6 I/O FT_f
TIM16_CH1N,
TIM4_CH1, I2C1_SCL,
HDMI_CEC, I2C4_SCL,
USART1_TX,
LPUART1_TX,
FDCAN2_TX,
OCTOSPIM_P1_NCS,
DFSDM1_DATIN5,
FMC_SDNE1,
DCMI_D5/PSSI_D5,
UART5_TX,
EVENTOUT
-
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 67/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
93 B5 134 D8 D6 B5 166 D6 59 A5 93 137 B5 165 B5 PB7 I/O FT_fa
TIM17_CH1N,
TIM4_CH2, I2C1_SDA,
I2C4_SDA,
USART1_RX,
LPUART1_RX,
DFSDM1_CKIN5,
FMC_NL,
DCMI_VSYNC/
PSSI_RDY,
EVENTOUT
PVD_IN
94 A5 135 A9 E6 C5 167 C5 60 D5 94 138 D6 166 E6 BOOT0 I B - VPP
95 A4 136 B9 B5 A2 168 B4 61 B4 95 139 A5 167 A7 PB8 I/O FT_fsh3
TIM16_CH1,
TIM4_CH3,
DFSDM1_CKIN7,
I2C1_SCL, I2C4_SCL,
SDMMC1_CKIN,
UART4_RX,
FDCAN1_RX,
SDMMC2_D4,
SDMMC1_D4,
DCMI_D6/PSSI_D6,
LCD_B6, EVENTOUT
-
96 E3 137 E8 C5 B3 169 A3 62 A4 96 140 B4 168 B4 PB9 I/O FT_fsh3
TIM17_CH1,
TIM4_CH4,
DFSDM1_DATIN7,
I2C1_SDA, SPI2_NSS/
I2S2_WS, I2C4_SDA,
SDMMC1_CDIR,
UART4_TX,
FDCAN1_TX,
SDMMC2_D5,
I2C4_SMBA,
SDMMC1_D5,
DCMI_D7/PSSI_D7,
LCD_B7, EVENTOUT
-
97 B4 138 F8 D5 B4 170 B3 - D4 97 141 A4 169 A6 PE0 I/O FT_h2
LPTIM1_ETR,
TIM4_ETR,
LPTIM2_ETR,
UART8_RX,
SAI2_MCK_A,
FMC_NBL0, DCMI_D2/
PSSI_D2, LCD_R0,
EVENTOUT
-
- C4 139 C9 D4 C4 171 C4 - C4 98 142 A3 170 A5 PE1 I/O FT_h2
LPTIM1_IN2,
UART8_TX,
FMC_NBL1, DCMI_D3/
PSSI_D3, LCD_R6,
EVENTOUT
-
- - 140 A10 A4 A4 172 E6 - - - - - - - VCAP S - - -
98 - 141 B10 - K10 173 - 63 E4 99 - - - F6 VSS S - - -
- D3 142 D9 C4 D4 174 D5 - F7 - 143 C6 171 E5 PDR_ON S - - -
99 - 143 A11 B4 A3 175 F5 - - - - - - - VDDLDO S - - -
100 - - - - - - - 64 - 100 144 - 172 E7 VDD S - - -
- - - - - - - A2 - - - - D4 173 C3 PI4 I/O FT_h2
TIM8_BKIN,
SAI2_MCK_A,
TIM8_BKIN_COMP12,
FMC_NBL2, DCMI_D5/
PSSI_D5, LCD_B4,
EVENTOUT
-
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 68/234
Pin/ball name(1) (2)
Pin name
(function
after reset)
Pin
type
I/O
structure Alternate functions Additional
functions
LQFP100 with SMPS
TFBGA100 with SMPS
LQFP144 with SMPS
WLCSP132 with SMPS
UFBGA169 with SMPS
UFBGA176+25 with SMPS
LQFP176 with SMPS
TFBGA225 with SMPS
LQFP64
TFBGA100
LQFP100
LQFP144
UFBGA176+25
LQFP176
TFBGA216
- - - - - - - B2 - - - - C4 174 D3 PI5 I/O FT_h2
TIM8_CH1,
SAI2_SCK_A,
FMC_NBL3,
DCMI_VSYNC/
PSSI_RDY, LCD_B5,
EVENTOUT
-
- - - - - - - C3 - - - - C3 175 D6 PI6 I/O FT_h2
TIM8_CH2,
SAI2_SD_A,
FMC_D28, DCMI_D6/
PSSI_D6, LCD_B6,
EVENTOUT
-
- - - - - - - D4 - - - - C2 176 D4 PI7 I/O FT_h2
TIM8_CH3,
SAI2_FS_A, FMC_D29,
DCMI_D7/PSSI_D7,
LCD_B7, EVENTOUT
-
- - - - - K12 - - - - - - J6 - - VSS S - - -
- - 144 A12 - - 176 - - - - - - - - VDD S - - -
- - - - - G8 - - - - - - D7 - - VSS S - - -
- - - - - G9 - - - - - - D8 - - VSS S - - -
- - - - - H7 - - - - - - F8 - - VSS S - - -
- - - - - H8 - - - - - - G12 - - VSS S - - -
- - - - - - - - - - - - F9 - - VSS S - - -
- - - - - H9 - - - - - - H9 - - VSS S - - -
- - - - - J8 - - - - - - H10 - - VSS S - - -
- - - - - K9 - - - - - - J7 - - VSS S - - -
- - - - - R15 - - - - - - J8 - - VSS S - - -
- - - - - - - - - - - - G6 - - VSS S - - -
- - - - - - - - - - - - K6 - - VSS S - - -
- - - - - - - - - - - - K7 - - VSS S - - -
1. The devices with SMPS correspond to commercial code STM32H7B3xIxxQ.
2. A non-connected I/O in a given package is configured as an output tied to VSS. Any analog peripheral
connected to such a pad (such as OPAMP, VREF+) must be disabled.
3. Pxy_C and Pxy pins/balls are two separate pads (analog switch open). The analog switch is configured
through a SYSCFG register. Refer to the product reference manual for a detailed description of the switch
configuration bits.
4. There is a direct path between Pxy_C and Pxy pins/balls, through an analog switch. Pxy alternate functions
are available on Pxy_C when the analog switch is closed. The analog switch is configured through a
SYSCFG register. Refer to the product reference manual for a detailed description of the switch
configuration bits.
STM32H7B3xI
Pin descriptions
DS13139 - Rev 6 page 69/234
Table 8. Port A alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS LPTIM1/
TIM1/2/16/17
PDM_SAI1/
TIM3/4/5/12/15
DFSDM1/
LPTIM2/3/
LPUART1/
OCTOSPIM_P1/2/
TIM8
CEC/DCMI/
PSSI/
DFSDM1/2/
I2C1/2/3/4/
LPTIM2/
TIM15/
USART1
CEC/SPI1/
I2S1/SPI2/
I2S2/SPI3/
I2S3/
SPI4/5/
SPI6/I2S6
DFSDM1/2/
I2C4/
OCTOSPIM_P1/
SAI1/SPI3/I2S3/
UART4
SDMMC1/
SPI2/I2S2/
SPI3/I2S3/
SPI6/I2S6/
UART7/
USART1/2/3/6
LPUART1/
SAI2/
SDMMC1/
SPDIFRX1/
SPI6/I2S6/
UART4/5/8
FDCAN1/2/FMC/
LCD/
OCTOSPIM_P1/2/
SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/LCD/
OCTOSPIM_P1/
OTG1_FS/OTG1_HS/
SAI2/SDMMC2/TIM8
DFSDM1/2/
I2C4/LCD/
MDIOS/
OCTOSPIM_P1/
SDMMC2/
SWPMI1/
TIM1/8/
UART7/9/
USART10
FMC/LCD/
MDIOS/
SDMMC1/
TIM1/8
COMP/DCMI/
PSSI/LCD/
TIM1
LCD/UART5 SYS
Port A
PA0 -TIM2_CH1/
TIM2_ETR TIM5_CH1 TIM8_ETR TIM15_BKIN SPI6_NSS/
I2S6_WS -
USART2_
CTS/
USART2_
NSS
UART4_TX SDMMC2_CMD SAI2_SD_B - - - - EVENTOUT
PA1 - TIM2_CH2 TIM5_CH2 LPTIM3_OUT TIM15_CH1N - - USART2_
RTS UART4_RX OCTOSPIM_
P1_IO3 SAI2_MCK_B OCTOSPIM_
P1_DQS - - LCD_R2 EVENTOUT
PA2 - TIM2_CH3 TIM5_CH3 - TIM15_CH1 - DFSDM2_
CKIN1
USART2_
TX SAI2_SCK_B - - - MDIOS_MDIO - LCD_R1 EVENTOUT
PA3 - TIM2_CH4 TIM5_CH4 OCTOSPIM_
P1_CLK TIM15_CH2 I2S6_MCK - USART2_
RX - LCD_B2 OTG_HS_
ULPI_D0 - - - LCD_B5 EVENTOUT
PA4 - - TIM5_ETR - - SPI1_NSS/
I2S1_WS
SPI3_NSS/
I2S3_WS
USART2_
CK
SPI6_NSS/
I2S6_WS - - - - DCMI_HSYNC/
PSSI_DE
LCD_
VSYNC EVENTOUT
PA5 PWR_NDSTOP2 TIM2_CH1/
TIM2_ETR - TIM8_CH1N - SPI1_SCK/
I2S1_CK - - SPI6_SCK/
I2S6_CK -OTG_HS_
ULPI_CK - - PSSI_D14 LCD_R4 EVENTOUT
PA6 - TIM1_BKIN TIM3_CH1 TIM8_BKIN - SPI1_MISO/
I2S1_SDI
OCTOSPIM_
P1_IO3 -SPI6_MISO/
I2S6_SDI TIM13_CH1 TIM8_BKIN_COMP12 MDIOS_MDC TIM1_BKIN_
COMP12
DCMI_PIXCLK/
PSSI_PDCK LCD_G2 EVENTOUT
PA7 - TIM1_CH1N TIM3_CH2 TIM8_CH1N DFSDM2_
DATIN1
SPI1_MOSI/
I2S1_SDO - - SPI6_MOSI/
I2S6_SDO TIM14_CH1 OCTOSPIM_P1_IO2 - FMC_SDNWE - LCD_VSYNC EVENTOUT
PA8 MCO1 TIM1_CH1 - TIM8_BKIN2 I2C3_SCL - - USART1_
CK - - OTG_HS_
SOF UART7_RX TIM8_BKIN2_
COMP12 LCD_B3 LCD_R6 EVENTOUT
PA9 - TIM1_CH2 - LPUART1_TX I2C3_SMBA SPI2_SCK/
I2S2_CK -USART1_
TX - - - - - DCMI_D0/
PSSI_D0 LCD_R5 EVENTOUT
PA10 - TIM1_CH3 - LPUART1_RX - - - USART1_
RX - - OTG_HS_
ID MDIOS_MDIO LCD_B4 DCMI_D1/
PSSI_D1 LCD_B1 EVENTOUT
PA11 - TIM1_CH4 - LPUART1_CTS - SPI2_NSS/
I2S2_WS UART4_RX
USART1_
CTS/
USART1_NSS
-FDCAN1_
RX - - - - LCD_R4 EVENTOUT
PA12 - TIM1_ETR - LPUART1_RTS - SPI2_SCK/
I2S2_CK UART4_TX USART1_
RTS SAI2_FS_B FDCAN1_
TX - - - - LCD_R5 EVENTOUT
PA13 JTMS/
SWDIO - - - - - - - - - - - - - - EVENTOUT
PA14 JTCK/
SWCLK - - - - - - - - - - - - - - EVENTOUT
PA15 JTDI TIM2_CH1/
TIM2_ETR - - HDMI_CEC SPI1_NSS/
I2S1_WS
SPI3_NSS/
I2S3_WS
SPI6_NSS/
I2S6_WS
UART4_
RTS LCD_R3 - UART7_TX - - LCD_B6 EVENTOUT
DS13139 - Rev 6 page 70/234
STM32H7B3xI
Table 9. Port B alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS LPTIM1/
TIM1/2/16/17
PDM_SAI1/
TIM3/4/5/12/15
DFSDM1/
LPTIM2/3/
LPUART1/
OCTOSPIM_P1/2/
TIM8
CEC/DCMI/PSSI/
DFSDM1/2/
I2C1/2/3/4/
LPTIM2/TIM15/
USART1
CEC/SPI1/
I2S1/SPI2/
I2S2/SPI3/
I2S3/
SPI4/5/
SPI6/I2S6
DFSDM1/2/I2C4/
OCTOSPIM_P1/
SAI1/SPI3/I2S3/
UART4
SDMMC1/SPI2/
I2S2/SPI3/I2S3/
SPI6/I2S6/
UART7/
USART1/2/3/6
LPUART1/
SAI2/
SDMMC1/
SPDIFRX1/
SPI6/I2S6/
UART4/5/8
FDCAN1/2/FMC/LC
D/OCTOSPIM_P1/2/
SDMMC2/
SPDIFRX1/TIM13/14
CRS/FMC/LCD/
OCTOSPIM_P1/
OTG1_FS/
OTG1_HS/
SAI2/SDMMC2/
TIM8
DFSDM1/2/
I2C4/LCD/MDIOS/
OCTOSPIM_P1/
SDMMC2/SWPMI1/
TIM1/8/UART7/9/
USART10
FMC/LCD/
MDIOS/
SDMMC1/
TIM1/8
COMP/DCMI/
PSSI/LCD/TIM1
LCD/
UART5 SYS
Port B
PB0 - TIM1_CH2N TIM3_CH3 TIM8_CH2N DFSDM2_CKOUT - DFSDM1_CKOUT - UART4_CTS LCD_R3 OTG_HS_
ULPI_D1 OCTOSPIM_P1_IO1 - - LCD_G1 EVENTOUT
PB1 - TIM1_CH3N TIM3_CH4 TIM8_CH3N - - DFSDM1_DATIN1 - - LCD_R6 OTG_HS_
ULPI_D2
OCTOSPIM_
P1_IO0 - - LCD_G0 EVENTOUT
PB2 RTC_OUT2 - SAI1_D1 - DFSDM1_CKIN1 - SAI1_SD_A SPI3_MOSI/
I2S3_SDO - OCTOSPIM_P1_CLK OCTOSPIM_
P1_DQS - - - - EVENTOUT
PB3 JTDO/
TRACESWO TIM2_CH2 - - - SPI1_SCK/
I2S1_CK
SPI3_SCK/
I2S3_CK -SPI6_SCK/
I2S6_CK SDMMC2_D2 CRS_SYNC UART7_RX - - - EVENTOUT
PB4 NJTRST TIM16_BKIN TIM3_CH1 - - SPI1_MISO/
I2S1_SDI
SPI3_MISO/
I2S3_SDI
SPI2_NSS/
I2S2_WS
SPI6_MISO/
I2S6_SDI SDMMC2_D3 - UART7_TX - - - EVENTOUT
PB5 - TIM17_BKIN TIM3_CH2 - I2C1_SMBA SPI1_MOSI/
I2S1_SDO I2C4_SMBA SPI3_MOSI/
I2S3_SDO
SPI6_MOSI/
I2S6_SDO FDCAN2_RX OTG_HS_
ULPI_D7 LCD_B5 FMC_SDCKE1 DCMI_D10/
PSSI_D10 UART5_RX EVENTOUT
PB6 - TIM16_CH1N TIM4_CH1 - I2C1_SCL HDMI_CEC I2C4_SCL USART1_TX LPUART1_TX FDCAN2_TX OCTOSPIM_
P1_NCS DFSDM1_DATIN5 FMC_SDNE1 DCMI_D5/PSSI_D5 UART5_TX EVENTOUT
PB7 - TIM17_CH1N TIM4_CH2 - I2C1_SDA - I2C4_SDA USART1_RX LPUART1_RX - - DFSDM1_CKIN5 FMC_NL DCMI_VSYNC/
PSSI_RDY - EVENTOUT
PB8 - TIM16_CH1 TIM4_CH3 DFSDM1_CKIN7 I2C1_SCL - I2C4_SCL SDMMC1_CKIN UART4_RX FDCAN1_RX SDMMC2_D4 - SDMMC1_D4 DCMI_D6/PSSI_D6 LCD_B6 EVENTOUT
PB9 - TIM17_CH1 TIM4_CH4 DFSDM1_DATIN7 I2C1_SDA SPI2_NSS/
I2S2_WS I2C4_SDA SDMMC1_CDIR UART4_TX FDCAN1_TX SDMMC2_D5 I2C4_SMBA SDMMC1_D5 DCMI_D7/PSSI_D7 LCD_B7 EVENTOUT
PB10 - TIM2_CH3 - LPTIM2_IN1 I2C2_SCL SPI2_SCK/
I2S2_CK DFSDM1_DATIN7 USART3_TX - OCTOSPIM_
P1_NCS
OTG_HS_
ULPI_D3 - - - LCD_G4 EVENTOUT
PB11 - TIM2_CH4 - LPTIM2_ETR I2C2_SDA - DFSDM1_CKIN7 USART3_RX - - OTG_HS_
ULPI_D4 - - - LCD_G5 EVENTOUT
PB12 - TIM1_BKIN - OCTOSPIM_
P1_NCLK I2C2_SMBA SPI2_NSS/
I2S2_WS DFSDM1_DATIN1 USART3_CK - FDCAN2_RX OTG_HS_
ULPI_D5 DFSDM2_DATIN1 - TIM1_BKIN_COMP12 UART5_RX EVENTOUT
PB13 - TIM1_CH1N - LPTIM2_OUT DFSDM2_CKIN1 SPI2_SCK/
I2S2_CK DFSDM1_CKIN1 USART3_CTS/
USART3_NSS - FDCAN2_TX OTG_HS_
ULPI_D6 - SDMMC1_D0 DCMI_D2/PSSI_D2 UART5_TX EVENTOUT
PB14 - TIM1_CH2N TIM12_CH1 TIM8_CH2N USART1_TX SPI2_MISO/
I2S2_SDI DFSDM1_DATIN2 USART3_RTS UART4_RTS SDMMC2_D0 - - - - LCD_CLK EVENTOUT
PB15 RTC_REFIN TIM1_CH3N TIM12_CH2 TIM8_CH3N USART1_RX SPI2_MOSI/
I2S2_SDO DFSDM1_CKIN2 - UART4_CTS SDMMC2_D1 - - - - LCD_G7 EVENTOUT
DS13139 - Rev 6 page 71/234
STM32H7B3xI
Table 10. Port C alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS LPTIM1/
TIM1/2/16/17
PDM_SAI1/
TIM3/4/5/12/15
DFSDM1/
LPTIM2/3/
LPUART1/
OCTOSPIM_P1/2/
TIM8
CEC/DCMI/PSSI/
DFSDM1/2/
I2C1/2/3/4/
LPTIM2/TIM15/
USART1
CEC/SPI1/
I2S1/SPI2/
I2S2/SPI3/
I2S3/
SPI4/5/
SPI6/I2S6
DFSDM1/2/I2C4/
OCTOSPIM_P1/
SAI1/SPI3/I2S3/
UART4
SDMMC1/
SPI2/I2S2/
SPI3/I2S3/
SPI6/I2S6/
UART7/
USART1/2/3/6
LPUART1/SAI2/
SDMMC1/
SPDIFRX1/SPI6/
I2S6/UART4/5/8
FDCAN1/2/FMC/LCD
/OCTOSPIM_P1/2/
SDMMC2/
SPDIFRX1/TIM13/14
CRS/FMC/LCD/
OCTOSPIM_P1/
OTG1_FS/
OTG1_HS/
SAI2/SDMMC2/
TIM8
DFSDM1/2/
I2C4/LCD/
MDIOS/
OCTOSPIM_P1/
SDMMC2/
SWPMI1/
TIM1/8/
UART7/9/
USART10
FMC/LCD/
MDIOS/
SDMMC1/
TIM1/8
COMP/DCMI/
PSSI/LCD/
TIM1
LCD/UART5 SYS
Port C
PC0 - - - DFSDM1_CKIN0 - - DFSDM1_DATIN4 - SAI2_FS_B FMC_A25 OTG_HS_
ULPI_STP LCD_G2 FMC_SDNWE - LCD_R5 EVENTOUT
PC1 TRACED0 - SAI1_D1 DFSDM1_DATIN0 DFSDM1_CKIN4 SPI2_MOSI/
I2S2_SDO SAI1_SD_A - - SDMMC2_CK OCTOSPIM_
P1_IO4 - MDIOS_MDC - LCD_G5 EVENTOUT
PC2 PWR_CSTOP - - DFSDM1_CKIN1 - SPI2_MISO/
I2S2_SDI DFSDM1_CKOUT - - OCTOSPIM_P1_IO2 OTG_HS_
ULPI_DIR
OCTOSPIM_
P1_IO5 FMC_SDNE0 - - EVENTOUT
PC3 PWR_CSLEEP - - DFSDM1_DATIN1 - SPI2_MOSI/
I2S2_SDO - - - OCTOSPIM_P1_IO0 OTG_HS_
ULPI_NXT
OCTOSPIM_
P1_IO6 FMC_SDCKE0 - - EVENTOUT
PC4 - - - DFSDM1_CKIN2 - I2S1_MCK - - - SPDIFRX1_IN2 - - FMC_SDNE0 - LCD_R7 EVENTOUT
PC5 - - SAI1_D3 DFSDM1_DATIN2 PSSI_D15 - - - - SPDIFRX1_IN3 OCTOSPIM_
P1_DQS - FMC_SDCKE0 COMP1_OUT LCD_DE EVENTOUT
PC6 - - TIM3_CH1 TIM8_CH1 DFSDM1_CKIN3 I2S2_MCK - USART6_TX SDMMC1_D0DIR FMC_NWAIT SDMMC2_D6 - SDMMC1_D6 DCMI_D0/
PSSI_D0 LCD_HSYNC EVENTOUT
PC7 TRGIO - TIM3_CH2 TIM8_CH2 DFSDM1_DATIN3 - I2S3_MCK USART6_RX SDMMC1_D123DIR FMC_NE1 SDMMC2_D7 SWPMI_TX SDMMC1_D7 DCMI_D1/
PSSI_D1 LCD_G6 EVENTOUT
PC8 TRACED1 - TIM3_CH3 TIM8_CH3 - - - USART6_CK UART5_RTS FMC_NE2/
FMC_NCE FMC_INT SWPMI_RX SDMMC1_D0 DCMI_D2/
PSSI_D2 - EVENTOUT
PC9 MCO2 - TIM3_CH4 TIM8_CH4 I2C3_SDA I2S_CKIN - - UART5_CTS OCTOSPIM_P1_IO0 LCD_G3 SWPMI_
SUSPEND SDMMC1_D1 DCMI_D3/
PSSI_D3 LCD_B2 EVENTOUT
PC10 - - - DFSDM1_CKIN5 DFSDM2_CKIN0 - SPI3_SCK/
I2S3_CK USART3_TX UART4_TX OCTOSPIM_P1_IO1 LCD_B1 SWPMI_RX SDMMC1_D2 DCMI_D8/
PSSI_D8 LCD_R2 EVENTOUT
PC11 - - - DFSDM1_DATIN5 DFSDM2_DATIN0 - SPI3_MISO/
I2S3_SDI USART3_RX UART4_RX OCTOSPIM_P1_NCS - - SDMMC1_D3 DCMI_D4/
PSSI_D4 LCD_B4 EVENTOUT
PC12 TRACED3 - TIM15_CH1 - DFSDM2_CKOUT SPI6_SCK/
I2S6_CK
SPI3_MOSI/
I2S3_SDO USART3_CK UART5_TX - - - SDMMC1_CK DCMI_D9/
PSSI_D9 LCD_R6 EVENTOUT
PC13 - - - - - - - - - - - - - - - EVENTOUT
PC14 - - - - - - - - - - - - - - - EVENTOUT
PC15 - - - - - - - - - - - - - - - EVENTOUT
DS13139 - Rev 6 page 72/234
STM32H7B3xI
Table 11. Port D alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS LPTIM1/
TIM1/2/16/17
PDM_SAI1/
TIM3/4/5/12/15
DFSDM1/
LPTIM2/3/
LPUART1/
OCTOSPIM_P1/2/
TIM8
CEC/DCMI/PSSI/
DFSDM1/2/
I2C1/2/3/4/
LPTIM2/TIM15/
USART1
CEC/SPI1/
I2S1/SPI2/
I2S2/SPI3/
I2S3/
SPI4/5/
SPI6/I2S6
DFSDM1/2/I2C4/
OCTOSPIM_P1/
SAI1/SPI3/I2S3/
UART4
SDMMC1/
SPI2/I2S2/
SPI3/I2S3/
SPI6/I2S6/
UART7/
USART1/2/3/6
LPUART1/
SAI2/
SDMMC1/
SPDIFRX1/
SPI6/I2S6/
UART4/5/8
FDCAN1/2/FMC/LC
D/OCTOSPIM_P1/2/
SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/LCD/
OCTOSPIM_P1/
OTG1_FS/
OTG1_HS/SAI2/
SDMMC2/TIM8
DFSDM1/2/
I2C4/LCD/
MDIOS/
OCTOSPIM_P1/
SDMMC2/
SWPMI1/
TIM1/8/
UART7/9/
USART10
FMC/LCD/
MDIOS/
SDMMC1/
TIM1/8
COMP/
DCMI/
PSSI/LCD/
TIM1
LCDUART5 SYS
Port D
PD0 - - - DFSDM1_CKIN6 - - - - UART4_RX FDCAN1_RX - UART9_CTS FMC_D2/
FMC_DA2 - LCD_B1 EVENTOUT
PD1 - - - DFSDM1_DATIN6 - - - - UART4_TX FDCAN1_TX - - FMC_D3/
FMC_DA3 - - EVENTOUT
PD2 TRACED2 - TIM3_ETR - TIM15_BKIN - - - UART5_RX LCD_B7 - - SDMMC1_CMD DCMI_D11/
PSSI_D11 LCD_B2 EVENTOUT
PD3 - - - DFSDM1_CKOUT - SPI2_SCK/
I2S2_CK -USART2_CTS/
USART2_NSS - - - - FMC_CLK DCMI_D5/
PSSI_D5 LCD_G7 EVENTOUT
PD4 - - - - - - - USART2_RTS - - OCTOSPIM_P1_IO4 - FMC_NOE - - EVENTOUT
PD5 - - - - - - - USART2_TX - - OCTOSPIM_P1_IO5 - FMC_NWE - - EVENTOUT
PD6 - - SAI1_D1 DFSDM1_CKIN4 DFSDM1_DATIN1 SPI3_MOSI/
I2S3_SDO SAI1_SD_A USART2_RX - - OCTOSPIM_P1_IO6 SDMMC2_CK FMC_NWAIT DCMI_D10/
PSSI_D10 LCD_B2 EVENTOUT
PD7 - - - DFSDM1_DATIN4 - SPI1_MOSI/
I2S1_SDO DFSDM1_CKIN1 USART2_CK - SPDIFRX1_IN0 OCTOSPIM_P1_IO7 SDMMC2_CMD FMC_NE1 - - EVENTOUT
PD8 - - - DFSDM1_CKIN3 - - - USART3_TX - SPDIFRX1_IN1 - - FMC_D13/
FMC_DA13 - - EVENTOUT
PD9 - - - DFSDM1_DATIN3 - - - USART3_RX - - - - FMC_D14/
FMC_DA14 - - EVENTOUT
PD10 - - - DFSDM1_CKOUT DFSDM2_CKOUT - - USART3_CK - - - - FMC_D15/
FMC_DA15 - LCD_B3 EVENTOUT
PD11 - - - LPTIM2_IN2 I2C4_SMBA - - USART3_CTS/
USART3_NSS - OCTOSPIM_P1_IO0 SAI2_SD_A - FMC_A16/
FMC_CLE - - EVENTOUT
PD12 - LPTIM1_IN1 TIM4_CH1 LPTIM2_IN1 I2C4_SCL - - USART3_RTS - OCTOSPIM_P1_IO1 SAI2_FS_A - FMC_A17/
FMC_ALE
DCMI_D12/
PSSI_D12 - EVENTOUT
PD13 - LPTIM1_OUT TIM4_CH2 - I2C4_SDA - - - - OCTOSPIM_P1_IO3 SAI2_SCK_A UART9_RTS FMC_A18 DCMI_D13/
PSSI_D13 - EVENTOUT
PD14 - - TIM4_CH3 - - - - - UART8_CTS - - UART9_RX FMC_D0/
FMC_DA0 - - EVENTOUT
PD15 - - TIM4_CH4 - - - - - UART8_RTS - - UART9_TX FMC_D1/
FMC_DA1 - - EVENTOUT
DS13139 - Rev 6 page 73/234
STM32H7B3xI
Table 12. Port E alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS LPTIM1/
TIM1/2/16/17
PDM_SAI1/
TIM3/4/5/12/15
DFSDM1/
LPTIM2/3/
LPUART1/
OCTOSPIM_P1/2/
TIM8
CEC/DCMI/
PSSI/
DFSDM1/2/
I2C1/2/3/4/
LPTIM2/
TIM15/
USART1
CEC/SPI1/
I2S1/SPI2/
I2S2/SPI3/
I2S3/
SPI4/5/
SPI6/I2S6
DFSDM1/2/
I2C4/
OCTOSPIM_P1/
SAI1/SPI3/I2S3/
UART4
SDMMC1/
SPI2/I2S2/
SPI3/I2S3/
SPI6/I2S6/
UART7/
USART1/2/3/6
LPUART1/
SAI2/
SDMMC1/
SPDIFRX1/
SPI6/I2S6/
UART4/5/8
FDCAN1/2/FMC/LC
D/OCTOSPIM_P1/2/
SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/LCD/
OCTOSPIM_P1/
OTG1_FS/
OTG1_HS/SAI2/
SDMMC2/TIM8
DFSDM1/2/
I2C4/LCD/MDIOS/
OCTOSPIM_P1/
SDMMC2/SWPMI1/
TIM1/8/UART7/9/
USART10
FMC/LCD/
MDIOS/
SDMMC1/
TIM1/8
COMP/DCMI/
PSSI/LCD/TIM1
LCD/
UART5 SYS
Port E
PE0 - LPTIM1_ETR TIM4_ETR - LPTIM2_ETR - - - UART8_Rx - SAI2_MCK_A - FMC_NBL0 DCMI_D2/
PSSI_D2 LCD_R0 EVENTOUT
PE1 - LPTIM1_IN2 - - - - - - UART8_Tx - - - FMC_NBL1 DCMI_D3/
PSSI_D3 LCD_R6 EVENTOUT
PE2 TRACECLK - SAI1_CK1 - - SPI4_SCK SAI1_MCLK_A - - OCTOSPIM_P1_IO2 - USART10_RX FMC_A23 - - EVENTOUT
PE3 TRACED0 - - - TIM15_BKIN - SAI1_SD_B - - - - USART10_TX FMC_A19 - - EVENTOUT
PE4 TRACED1 - SAI1_D2 DFSDM1_DATIN3 TIM15_CH1N SPI4_NSS SAI1_FS_A - - - - - FMC_A20 DCMI_D4/
PSSI_D4 LCD_B0 EVENTOUT
PE5 TRACED2 - SAI1_CK2 DFSDM1_CKIN3 TIM15_CH1 SPI4_MISO SAI1_SCK_A - - - - - FMC_A21 DCMI_D6/
PSSI_D6 LCD_G0 EVENTOUT
PE6 TRACED3 TIM1_BKIN2 SAI1_D1 - TIM15_CH2 SPI4_MOSI SAI1_SD_A - - - SAI2_MCK_B TIM1_BKIN2_
COMP12 FMC_A22 DCMI_D7/
PSSI_D7 LCD_G1 EVENTOUT
PE7 - TIM1_ETR - DFSDM1_DATIN2 - - - UART7_RX - - OCTOSPIM_P1_IO4 - FMC_D4/
FMC_DA4 - - EVENTOUT
PE8 - TIM1_CH1N - DFSDM1_CKIN2 - - - UART7_TX - - OCTOSPIM_P1_IO5 - FMC_D5/
FMC_DA5 COMP2_OUT - EVENTOUT
PE9 - TIM1_CH1 - DFSDM1_CKOUT - - - UART7_RTS - - OCTOSPIM_P1_IO6 - FMC_D6/
FMC_DA6 - - EVENTOUT
PE10 - TIM1_CH2N - DFSDM1_DATIN4 - - - UART7_CTS - - OCTOSPIM_P1_IO7 - FMC_D7/
FMC_DA7 - - EVENTOUT
PE11 - TIM1_CH2 - DFSDM1_CKIN4 - SPI4_NSS - - - - SAI2_SD_B OCTOSPIM_P1_NCS FMC_D8/
FMC_DA8 - LCD_G3 EVENTOUT
PE12 - TIM1_CH3N - DFSDM1_DATIN5 - SPI4_SCK - - - - SAI2_SCK_B - FMC_D9/
FMC_DA9
COMP1_
OUT LCD_B4 EVENTOUT
PE13 - TIM1_CH3 - DFSDM1_CKIN5 - SPI4_MISO - - - - SAI2_FS_B - FMC_D10/
FMC_DA10 COMP2_OUT LCD_DE EVENTOUT
PE14 - TIM1_CH4 - - SPI4_MOSI - - - - SAI2_MCK_B - FMC_D11/
FMC_DA11 - LCD_CLK EVENTOUT
PE15 - TIM1_BKIN - - - - - - - - USART10_CK FMC_D12/
FMC_DA12 TIM1_BKIN_COMP12 LCD_R7 EVENTOUT
DS13139 - Rev 6 page 74/234
STM32H7B3xI
Table 13. Port F alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS LPTIM1/
TIM1/2/16/17
PDM_SAI1/
TIM3/4/5/12/15
DFSDM1/
LPTIM2/3/
LPUART1/
OCTOSPIM_P1/2/
TIM8
CEC/DCMI/
PSSI/
DFSDM1/2/
I2C1/2/3/4/
LPTIM2/
TIM15/
USART1
CEC/SPI1/
I2S1/SPI2/
I2S2/SPI3/
I2S3/SPI4/5/
SPI6/I2S6
DFSDM1/2/I2C4/
OCTOSPIM_P1/
SAI1/SPI3/I2S3/
UART4
SDMMC1/SPI2/
I2S2/SPI3/
I2S3/SPI6/
I2S6/UART7/
USART1/2/3/6
LPUART1/
SAI2/
SDMMC1/
SPDIFRX1/
SPI6/I2S6/
UART4/5/8
FDCAN1/2/FMC/LCD/
OCTOSPIM_P1/2/
SDMMC2/SPDIFRX1/
TIM13/14
CRS/FMC/LCD/
OCTOSPIM_P1/
OTG1_FS/OTG1_HS/
SAI2/SDMMC2/TIM8
DFSDM1/2/
I2C4/LCD/
MDIOS/
OCTOSPIM_P1/
SDMMC2/
SWPMI1/TIM1/8/
UART7/9/
USART10
FMC/LCD/
MDIOS/
SDMMC1/
TIM1/8
COMP/
DCMI/
PSSI/LCD/
TIM1
LCD/
UART5 SYS
Port F
PF0 - - - - I2C2_SDA - - - - OCTOSPIM_P2_IO0 - - FMC_A0 - - EVENTOUT
PF1 - - - - I2C2_SCL - - - - OCTOSPIM_P2_IO1 - - FMC_A1 - - EVENTOUT
PF2 - - - - I2C2_SMBA - - - - OCTOSPIM_P2_IO2 - - FMC_A2 - - EVENTOUT
PF3 - - - - - - - - - OCTOSPIM_P2_IO3 - - FMC_A3 - - EVENTOUT
PF4 - - - - - - - - - OCTOSPIM_P2_CLK - - FMC_A4 - - EVENTOUT
PF5 - - - - - - - - - OCTOSPIM_
P2_NCLK - - FMC_A5 - - EVENTOUT
PF6 - TIM16_CH1 - - - SPI5_NSS SAI1_SD_B UART7_Rx - - OCTOSPIM_P1_IO3 - - - - EVENTOUT
PF7 - TIM17_CH1 - - - SPI5_SCK SAI1_MCLK_B UART7_Tx - - OCTOSPIM_P1_IO2 - - - - EVENTOUT
PF8 - TIM16_CH1N - - - SPI5_MISO SAI1_SCK_B UART7_RTS - TIM13_CH1 OCTOSPIM_P1_IO0 - - - - EVENTOUT
PF9 - TIM17_CH1N - - - SPI5_MOSI SAI1_FS_B UART7_CTS - TIM14_CH1 OCTOSPIM_P1_IO1 - - - - EVENTOUT
PF10 - TIM16_BKIN SAI1_D3 - PSSI_D15 - - - - OCTOSPIM_P1_CLK - - - DCMI_D11/
PSSI_D11 LCD_DE EVENTOUT
PF11 - - - - - SPI5_MOSI - - - OCTOSPIM_
P1_NCLK SAI2_SD_B - FMC_SDNRAS DCMI_D12/
PSSI_D12 - EVENTOUT
PF12 - - - - - - - - - OCTOSPIM_
P2_DQS - - FMC_A6 - - EVENTOUT
PF13 - - - DFSDM1_DATIN6 I2C4_SMBA - - - - - - - FMC_A7 - - EVENTOUT
PF14 - - - DFSDM1_CKIN6 I2C4_SCL - - - - - - - FMC_A8 - - EVENTOUT
PF15 - - - - I2C4_SDA - - - - - - - FMC_A9 - - EVENTOUT
DS13139 - Rev 6 page 75/234
STM32H7B3xI
Table 14. Port G alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS LPTIM1/
TIM1/2/16/17
PDM_SAI1/
TIM3/4/5/12/15
DFSDM1/LPTIM2/3/
LPUART1/
OCTOSPIM_P1/2/
TIM8
CEC/DCMI/
PSSI/
DFSDM1/2/
I2C1/2/3/4/
LPTIM2/
TIM15/
USART1
CEC/SPI1/
I2S1/SPI2/
I2S2/SPI3/
I2S3/
SPI4/5/
SPI6/I2S6
DFSDM1/2/
I2C4/
OCTOSPIM_P1/
SAI1/SPI3/I2S3/
UART4
SDMMC1/
SPI2/I2S2/
SPI3/I2S3/
SPI6/I2S6/
UART7/
USART1/2/3/6
LPUART1/
SAI2/
SDMMC1/
SPDIFRX1/
SPI6/I2S6/
UART4/5/8
FDCAN1/2/FMC/LCD
/OCTOSPIM_P1/2/
SDMMC2/SPDIFRX1/
TIM13/14
CRS/FMC/LCD/
OCTOSPIM_P1/
OTG1_FS/
OTG1_HS/SAI2/
SDMMC2/TIM8
DFSDM1/2/
I2C4/LCD/
MDIOS/
OCTOSPIM_P1/
SDMMC2/
SWPMI1/
TIM1/8/
UART7/9/
USART10
FMC/LCD/
MDIOS/
SDMMC1/
TIM1/8
COMP/DCMI/
PSSI/LCD/
TIM1
LCD/
UART5 SYS
Port G
PG0 - - - - - - - - - OCTOSPIM_P2_IO4 - UART9_RX FMC_A10 - - EVENTOUT
PG1 - - - - - - - - - OCTOSPIM_P2_IO5 - UART9_TX FMC_A11 - - EVENTOUT
PG2 - - - TIM8_BKIN - - - - - - - TIM8_BKIN_
COMP12 FMC_A12 - - EVENTOUT
PG3 - - - TIM8_BKIN2 - - - - - - - TIM8_BKIN2_
COMP12 FMC_A13 - - EVENTOUT
PG4 - TIM1_BKIN2 - - - - - - - - - TIM1_BKIN2_
COMP12
FMC_A14/
FMC_BA0 - - EVENTOUT
PG5 - TIM1_ETR - - - - - - - - - - FMC_A15/
FMC_BA1 - - EVENTOUT
PG6 - TIM17_BKIN - - - - - - - - OCTOSPIM_P1_NCS - FMC_NE3 DCMI_D12/
PSSI_D12 LCD_R7 EVENTOUT
PG7 - - - - - - SAI1_MCLK_A USART6_CK - OCTOSPIM_P2_DQS - - FMC_INT DCMI_D13/
PSSI_D13 LCD_CLK EVENTOUT
PG8 - - - TIM8_ETR - SPI6_NSS/
I2S6_WS - USART6_RTS SPDIFRX1_IN2 - - - FMC_SDCLK - LCD_G7 EVENTOUT
PG9 - - - - - SPI1_MISO/
I2S1_SDI - USART6_RX SPDIFRX1_IN3 OCTOSPIM_P1_IO6 SAI2_FS_B SDMMC2_D0 FMC_NE2/
FMC_NCE
DCMI_VSYNC/
PSSI_RDY - EVENTOUT
PG10 - - - OCTOSPIM_P2_IO6 - SPI1_NSS/
I2S1_WS - - - LCD_G3 SAI2_SD_B SDMMC2_D1 FMC_NE3 DCMI_D2/
PSSI_D2 LCD_B2 EVENTOUT
PG11 - LPTIM1_IN2 - - - SPI1_SCK/
I2S1_CK - - SPDIFRX1_IN0 OCTOSPIM_P2_IO7 SDMMC2_D2 USART10_RX - DCMI_D3/
PSSI_D3 LCD_B3 EVENTOUT
PG12 - LPTIM1_IN1 - OCTOSPIM_P2_NCS - SPI6_MISO/
I2S6_SDI - USART6_RTS SPDIFRX1_IN1 LCD_B4 SDMMC2_D3 USART10_TX - - LCD_B1 EVENTOUT
PG13 TRACED0 LPTIM1_OUT - - - SPI6_SCK/
I2S6_CK -USART6_CTS/
USART6_NSS - - SDMMC2_D6 USART10_CTS/
USART10_NSS - - LCD_R0 EVENTOUT
PG14 TRACED1 LPTIM1_ETR - - - SPI6_MOSI/
I2S6_SDO - USART6_TX - OCTOSPIM_P1_IO7 SDMMC2_D7 USART10_RTS - - LCD_B0 EVENTOUT
PG15 - - - - - - - USART6_CTS/
USART6_NSS - OCTOSPIM_P2_DQS - - - DCMI_D13/
PSSI_D13 - EVENTOUT
DS13139 - Rev 6 page 76/234
STM32H7B3xI
Table 15. Port H alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS LPTIM1/
TIM1/2/16/17
PDM_SAI1/
TIM3/4/5/12/15
DFSDM1/
LPTIM2/3/
LPUART1/
OCTOSPIM_P1/2/
TIM8
CEC/DCMI/
PSSI/
DFSDM1/2/
I2C1/2/3/4/
LPTIM2/
TIM15/
USART1
CEC/SPI1/
I2S1/SPI2/
I2S2/SPI3/
I2S3/SPI4/5/
SPI6/I2S6
DFSDM1/2/I2C4/
OCTOSPIM_P1/
SAI1/SPI3/I2S3/
UART4
SDMMC1/SPI2/
I2S2/SPI3/I2S3/
SPI6/I2S6/
UART7/
USART1/2/3/6
LPUART1/
SAI2/
SDMMC1/
SPDIFRX1/
SPI6/I2S6/
UART4/5/8
FDCAN1/2/FMC/LCD
/OCTOSPIM_P1/2/
SDMMC2/SPDIFRX1/
TIM13/14
CRS/FMC/LCD/
OCTOSPIM_P1/
OTG1_FS/
OTG1_HS/SAI2/
SDMMC2/TIM8
DFSDM1/2/
I2C4/LCD/
MDIOS/
OCTOSPIM_P1/
SDMMC2/
SWPMI1/TIM1/8/
UART7/9/
USART10
FMC/LCD/
MDIOS/
SDMMC1/
TIM1/8
COMP/DCMI/
PSSI/LCD/TIM1
LCD/
UART5 SYS
Port H
PH0 - - - - - - - - - - - - - - - EVENTOUT
PH1 - - - - - - - - - - - - - - - EVENTOUT
PH2 - LPTIM1_IN2 - - - - - - - OCTOSPIM_P1_IO4 SAI2_SCK_B - FMC_SDCKE0 - LCD_R0 EVENTOUT
PH3 - - - - - - - - - OCTOSPIM_P1_IO5 SAI2_MCK_B - FMC_SDNE0 - LCD_R1 EVENTOUT
PH4 - - - - I2C2_SCL - - - - LCD_G5 OTG_HS_
ULPI_NXT - - PSSI_D14 LCD_G4 EVENTOUT
PH5 - - - - I2C2_SDA SPI5_NSS - - - - - - FMC_SDNWE - - EVENTOUT
PH6 - - TIM12_CH1 - I2C2_SMBA SPI5_SCK - - - - - - FMC_SDNE1 DCMI_D8/
PSSI_D8 - EVENTOUT
PH7 - - - - I2C3_SCL SPI5_MISO - - - - - - FMC_SDCKE1 DCMI_D9/
PSSI_D9 - EVENTOUT
PH8 - - TIM5_ETR - I2C3_SDA - - - - - - - FMC_D16 DCMI_HSYNC/
PSSI_DE LCD_R2 EVENTOUT
PH9 - - TIM12_CH2 - I2C3_SMBA - - - - - - - FMC_D17 DCMI_D0/
PSSI_D0 LCD_R3 EVENTOUT
PH10 - - TIM5_CH1 - I2C4_SMBA - - - - - - - FMC_D18 DCMI_D1/
PSSI_D1 LCD_R4 EVENTOUT
PH11 - - TIM5_CH2 - I2C4_SCL - - - - - - - FMC_D19 DCMI_D2/
PSSI_D2 LCD_R5 EVENTOUT
PH12 - - TIM5_CH3 - I2C4_SDA - - - - - - - FMC_D20 DCMI_D3/
PSSI_D3 LCD_R6 EVENTOUT
PH13 - - - TIM8_CH1N - - - - UART4_TX FDCAN1_TX - - FMC_D21 - LCD_G2 EVENTOUT
PH14 - - - TIM8_CH2N - - - - UART4_RX FDCAN1_RX - - FMC_D22 DCMI_D4/
PSSI_D4 LCD_G3 EVENTOUT
PH15 - - - TIM8_CH3N - - - - - - - - FMC_D23 DCMI_D11/
PSSI_D11 LCD_G4 EVENTOUT
DS13139 - Rev 6 page 77/234
STM32H7B3xI
Table 16. Port I alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS LPTIM1/
TIM1/2/16/17
PDM_SAI1/
TIM3/4/5/12/15
DFSDM1/LPTIM2/3/
LPUART1/
OCTOSPIM_P1/2/TIM8
CEC/DCMI/
PSSI/
DFSDM1/2/
I2C1/2/3/4/
LPTIM2/
TIM15/
USART1
CEC/SPI1/
I2S1/SPI2/
I2S2/SPI3/
I2S3/SPI4/5/
SPI6/I2S6
DFSDM1/2/I2C4/
OCTOSPIM_P1/
SAI1/SPI3/I2S3/
UART4
SDMMC1/
SPI2/I2S2/
SPI3/I2S3/
SPI6/I2S6/
UART7/
USART1/2/3/6
LPUART1/
SAI2/
SDMMC1/
SPDIFRX1/
SPI6/I2S6/
UART4/5/8
FDCAN1/2/FMC/L
CD/
OCTOSPIM_P1/2/
SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/LCD/
OCTOSPIM_P1/
OTG1_FS/
OTG1_HS/SAI2/
SDMMC2/TIM8
DFSDM1/2/I2C4/LCD/
MDIOS/
OCTOSPIM_P1/
SDMMC2/SWPMI1/
TIM1/8/UART7/9/
USART10
FMC/LCD/
MDIOS/
SDMMC1/
TIM1/8
COMP/DCMI/
PSSI/LCD/TIM1 LCD/UART5 SYS
Port I
PI0 - - TIM5_CH4 - - SPI2_NSS/
I2S2_WS - - - - - - FMC_D24 DCMI_D13/
PSSI_D13 LCD_G5 EVENTOUT
PI1 - - - TIM8_BKIN2 - SPI2_SCK/
I2S2_CK - - - - - TIM8_BKIN2_COMP12 FMC_D25 DCMI_D8/
PSSI_D8 LCD_G6 EVENTOUT
PI2 - - - TIM8_CH4 - SPI2_MISO/
I2S2_SDI - - - - - - FMC_D26 DCMI_D9/
PSSI_D9 LCD_G7 EVENTOUT
PI3 - - - TIM8_ETR - SPI2_MOSI/
I2S2_SDO - - - - - - FMC_D27 DCMI_D10/
PSSI_D10 - EVENTOUT
PI4 - - - TIM8_BKIN - - - - - - SAI2_MCK_A TIM8_BKIN_COMP12 FMC_NBL2 DCMI_D5/
PSSI_D5 LCD_B4 EVENTOUT
PI5 - - - TIM8_CH1 - - - - - - SAI2_SCK_A - FMC_NBL3
DCMI_VSYNC/
PSSI_
RDY
LCD_B5 EVENTOUT
PI6 - - - TIM8_CH2 - - - - - - SAI2_SD_A - FMC_D28 DCMI_D6/
PSSI_D6 LCD_B6 EVENTOUT
PI7 - - - TIM8_CH3 - - - - - - SAI2_FS_A - FMC_D29 DCMI_D7/
PSSI_D7 LCD_B7 EVENTOUT
PI8 - - - - - - - - - - - - - - - EVENTOUT
PI9 - - - OCTOSPIM_P2_IO0 - - - - UART4_RX FDCAN1_RX - - FMC_D30 - LCD_
VSYNC EVENTOUT
PI10 - - - OCTOSPIM_P2_IO1 - - - - - - - - FMC_D31 PSSI_D14 LCD_
HSYNC EVENTOUT
PI11 - - - OCTOSPIM_P2_IO2 - - - - - LCD_G6 OTG_HS_
ULPI_DIR - - PSSI_D15 - EVENTOUT
PI12 - - - OCTOSPIM_P2_IO3 - - - - - - - - - - LCD_HSYNC EVENTOUT
PI13 - - - OCTOSPIM_P2_CLK - - - - - - - - - - LCD_VSYNC EVENTOUT
PI14 - - - OCTOSPIM_P2_NCLK - - - - - - - - - - LCD_CLK EVENTOUT
PI15 - - - - - - - - - LCD_G2 - - - - LCD_R0 EVENTOUT
DS13139 - Rev 6 page 78/234
STM32H7B3xI
Table 17. Port J alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS LPTIM1/
TIM1/2/16/17
PDM_SAI1/
TIM3/4/5/12/15
DFSDM1/LPTIM2/3/
LPUART1/
OCTOSPIM_P1/2/
TIM8
CEC/DCMI/
PSSI/
DFSDM1/2/
I2C1/2/3/4/
LPTIM2/
TIM15/
USART1
CEC/SPI1/
I2S1/SPI2/
I2S2/SPI3/
I2S3/SPI4/5/
SPI6/I2S6
DFSDM1/2/I2C4/
OCTOSPIM_P1/
SAI1/SPI3/I2S3/
UART4
SDMMC1/SPI2/
I2S2/SPI3/I2S3/
SPI6/I2S6/
UART7/
USART1/2/3/6
LPUART1/
SAI2/
SDMMC1/
SPDIFRX1/
SPI6/I2S6/
UART4/5/8
FDCAN1/2/FMC/LC
D/
OCTOSPIM_P1/2/
SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/LCD/
OCTOSPIM_P1/
OTG1_FS/
OTG1_HS/SAI2/
SDMMC2/TIM8
DFSDM1/2/
I2C4/LCD/MDIOS/
OCTOSPIM_P1/
SDMMC2/
SWPMI1/TIM1/8/
UART7/9/
USART10
FMC/LCD/
MDIOS/
SDMMC1/
TIM1/8
COMP/
DCMI/
PSSI/LC
D/TIM1
LCD/
UART5 SYS
Port J
PJ0 - - - - - - - - - LCD_R7 - - - - LCD_R1 EVENTOUT
PJ1 - - - OCTOSPIM_P2_IO4 - - - - - - - - - - LCD_R2 EVENTOUT
PJ2 - - - OCTOSPIM_P2_IO5 - - - - - - - - - - LCD_R3 EVENTOUT
PJ3 - - - - - - - - - - - UART9_RTS - - LCD_R4 EVENTOUT
PJ4 - - - - - - - - - - - UART9_CTS - - LCD_R5 EVENTOUT
PJ5 - - - - - - - - - - - - - - LCD_R6 EVENTOUT
PJ6 - - - TIM8_CH2 - - - - - - - - - - LCD_R7 EVENTOUT
PJ7 TRGIN - - TIM8_CH2N - - - - - - - - - - LCD_G0 EVENTOUT
PJ8 - TIM1_CH3N - TIM8_CH1 - - - - UART8_TX - - - - - LCD_G1 EVENTOUT
PJ9 - TIM1_CH3 - TIM8_CH1N - - - - UART8_RX - - - - - LCD_G2 EVENTOUT
PJ10 - TIM1_CH2N - TIM8_CH2 - SPI5_MOSI - - - - - - - - LCD_G3 EVENTOUT
PJ11 - TIM1_CH2 - TIM8_CH2N - SPI5_MISO - - - - - - - - LCD_G4 EVENTOUT
PJ12 TRGOUT - - - - - - - - LCD_G3 - - - - LCD_B0 EVENTOUT
PJ13 - - - - - - - - - LCD_B4 - - - - LCD_B1 EVENTOUT
PJ14 - - - - - - - - - - - - - - LCD_B2 EVENTOUT
PJ15 - - - - - - - - - - - - - - LCD_B3 EVENTOUT
Table 18. Port K alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS LPTIM1/
TIM1/2/16/17
PDM_SAI1/
TIM3/4/5/12/15
DFSDM1/LPTIM2/3/
LPUART1/
OCTOSPIM_P1/2/
TIM8
CEC/DCMI/
PSSI/
DFSDM1/2/
I2C1/2/3/4/
LPTIM2/
TIM15/
USART1
CEC/SPI1/
I2S1/SPI2/
I2S2/SPI3/
I2S3/SPI4/5/
SPI6/I2S6
DFSDM1/2/I2C4/
OCTOSPIM_P1/
SAI1/SPI3/I2S3/
UART4
SDMMC1/SPI2/
I2S2/SPI3/I2S3/
SPI6/I2S6/
UART7/
USART1/2/3/6
LPUART1/
SAI2/
SDMMC1/
SPDIFRX1/
SPI6/I2S6/
UART4/5/8
FDCAN1/2/FMC/LC
D/
OCTOSPIM_P1/2/
SDMMC2/
SPDIFRX1/
TIM13/14
CRS/FMC/LCD/
OCTOSPIM_P1/
OTG1_FS/OTG1_HS/
SAI2/SDMMC2/TIM8
DFSDM1/2/I2C4/LCD/
MDIOS/
OCTOSPIM_P1/
SDMMC2/SWPMI1/
TIM1/8/UART7/9/
USART10
FMC/LCD/
MDIOS/
SDMMC1/
TIM1/8
COMP/
DCMI/
PSSI/LC
D/TIM1
LCD/
UART5 SYS
Port K
PK0 - TIM1_CH1N - TIM8_CH3 - SPI5_SCK - - - - - - - - LCD_G5 EVENTOUT
PK1 - TIM1_CH1 - TIM8_CH3N - SPI5_NSS - - - - - - - - LCD_G6 EVENTOUT
PK2 - TIM1_BKIN - TIM8_BKIN - - - - - - TIM8_BKIN_COMP12 TIM1_BKIN_COMP12 - - LCD_G7 EVENTOUT
PK3 - - - OCTOSPIM_P2_IO6 - - - - - - - - - - LCD_B4 EVENTOUT
PK4 - - - OCTOSPIM_P2_IO7 - - - - - - - - - - LCD_B5 EVENTOUT
PK5 - - - OCTOSPIM_P2_NCS - - - - - - - - - - LCD_B6 EVENTOUT
PK6 - - - OCTOSPIM_P2_DQS - - - - - - - - - - LCD_B7 EVENTOUT
PK7 - - - - - - - - - - - - - LCD_DE EVENTOUT
DS13139 - Rev 6 page 79/234
STM32H7B3xI
6Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of junction
temperature, supply voltage and frequencies by tests in production on 100% of the devices with an junction
temperature at TJ = 25 °C and TJ = TJmax (given by the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the
table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and
represent the mean value plus or minus three times the standard deviation (mean±3σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TJ = 25 °C, VDD = 3.3 V (for the 1.62 V ≤ VDD ≤ 3.6 V
voltage range). They are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion
lot over the full temperature range, where 95% of the devices have an error less than or equal to the value
indicated (mean±2σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 19. Pin loading conditions.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 20. Pin input voltage.
Figure 19. Pin loading conditions
C = 50 pF
MCU pin
Figure 20. Pin input voltage
MCU pin
VIN
STM32H7B3xI
Electrical characteristics
DS13139 - Rev 6 page 80/234
6.1.6 Power supply scheme
Figure 21. Power supply scheme
VDD
VDD50USB
VREF-
VSSA
VSS
Analog domain
Core domain
Backup
domain
LDO
Voltage
regulator
Power switch
VDDLDO
VDDSMPS
VLXSMPS
VSSSMPS
VFBSMPS
VBAT
VDDA
VREF+
VDD
USB regulator
VCAP1/2
VDDMMC
PDR_ON POR/PDR
100 nF1 μF
100 nF
1 μF
1 μF 1 μF 100 nF
47W
VDDA
Three different possible use cases
VREF+
100 nF
1 μF
1 μF
5V
Two different possible use cases
3.3V
Battery
100 nF(1)
VDD
100 nF(1)
4.7 μF
VDD
100 nF
100
nF
1 μF
Two different possible use cases
VDDMMC
Two different possible use cases
100nF
100 nF(1)
2.2 μF
LDO enabled LDO disabled VCAP3
SMPS enabled SMPS disabled
4.7 μF 100 pF or 200 pF
4.7 μF
4.7 μ F
10 μF
VDDSMPS
2.2 μH
VDDMMC
IOs
BKUP
IOs
VDD
IOs
VDD
domain
Two different possible use cases
4.7 μF
USB FS
IOs
SMPS
Switched Mode
Power Supply
step down
converter
Defines different use case options
Define power domaines
VDD33USB
STM32H7B3xI
Parameter conditions
DS13139 - Rev 6 page 81/234
1. 100 nF filtering capacitor on each package pin.
2. A tolerance of +/- 20% is acceptable on decoupling capacitors.
Note: Refer to Getting started with STM32H7A3/7B3 and STM32H7B0 hardware development(AN5307) for more
details.
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic capacitors as shown
above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside
of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to
reduce PCB size or cost. This might cause incorrect operation of the device.
6.1.7 Current consumption measurement
Figure 22. Current consumption measurement scheme
IDD_VBAT
LDO ON
VBAT
IDD
VDD
VDDA
VDDLDO
VDDMMC
IDD_VBAT
SMPS ON
VBAT
IDD
VDD
VDDA
VDDSMPS
VDDMMC
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 19. Voltage characteristics, Table 20. Current
characteristics, and Table 21. Thermal characteristics may cause permanent damage to the device. These are
stress ratings only and the functional operation of the device at these conditions is not implied. Exposure to
maximum rating conditions for extended periods may affect device reliability. Device mission profile (application
conditions) is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are available on
demand.
Table 19. Voltage characteristics
All main power (VDD, VDDA, VDD33USB, VDDMMC, VDDSMPS, VBAT) and ground (VSS, VSSA) pins must always be connected to the
external power supply, in the permitted range.
Symbols Ratings Min Max Unit
VDDX − VSS External main supply voltage (including VDD, VDDLDO, VDDSMPS,
VDDA, VDD33USB, VDDMMC, VBAT, VREF+)−0.3 4.0 V
VIN(1)
Input voltage on FT_xxx pins VSS−0.3
Min(VDD, VDDA,
VDD33USB, VDDMMC,
VBAT) +4.0(2)(3)
V
Input voltage on TT_xx pins VSS−0.3 4.0 V
Input voltage on BOOT0 pin VSS 9.0 V
Input voltage on any other pins VSS−0.3 4.0 V
|ΔVDDX| Variations between different VDDX power pins of the same domain - 50 mV
STM32H7B3xI
Absolute maximum ratings
DS13139 - Rev 6 page 82/234
Symbols Ratings Min Max Unit
|VSSx−VSS|Variations between all the different ground pins - 50 mV
1. VIN maximum value must always be respected. Refer to Table 64. I/O current injection susceptibility for the maximum
allowed injected current values.
2. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
3. This formula has to be applied on power supplies related to the I/O structure described by the pin definition table.
Table 20. Current characteristics
Symbols Ratings Max Unit
ΣIVDD Total current into sum of all VDD power lines (source)(1) 620
mA
ΣIVSS Total current out of sum of all VSS ground lines (sink)(1) 620
IVDD Maximum current into each VDD power pin (source)(1) 100
IVSS Maximum current out of each VSS ground pin (sink)(1) 100
IIO Output current sunk by any I/O and control pin 20
ΣI(PIN)
Total output current sunk by sum of all I/Os and control pins(2) 140
Total output current sourced by sum of all I/Os and control pins(2) 140
IINJ(PIN)(3)(4) Injected current on FT_xxx, TT_xx, RST and B pins except PA4, PA5 −5/+0
Injected current on PA4, PA5 −0/0
ΣIINJ(PIN) Total injected current (sum of all I/Os and control pins)(5) ±25
1. All main power (VDD, VDDA, VDDSMPS, VDDLDO, VDD33USB, VDDMMC) and ground (VSS, VSSA) pins must always be
connected to the external power supplies, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
3. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be
exceeded. Refer also to Table 19. Voltage characteristics for the maximum allowed input voltage values.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. When several inputs are submitted to a current injection, the maximum ∑IINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 21. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range −65 to +150 °C
TJMaximum junction temperature 130(1)
1. The junction temperature is limited to 105 °C in the VOS0 voltage range.
STM32H7B3xI
Absolute maximum ratings
DS13139 - Rev 6 page 83/234
6.3 Operating conditions
6.3.1 General operating conditions
Table 22. General operating conditions
Symbol Parameter Operating conditions Min Typ Max Unit
VDD Standard operating voltage - 1.62(1) - 3.6
V
VDDLDO Supply voltage for the internal regulator VDDLDO ≤ VDD 1.62(1) - 3.6
1.2(2) - 3.6
VDDSMPS Supply voltage for the internal SMPS Step-down
converter VDDSMPS = VDD 1.62(1) - 3.6
VDDMMC Standard operating voltage for independent MMC
I/Os
Indenpent MMC I/Os
used 1.62(1) - 3.6
Independent MMC I/Os
not used VDDMMC =
VDD
1.62(1) - 3.6
VDD33USB Standard operating voltage, USB domain USB used 3.0 - 3.6
USB not used 0 - 3.6
VDDA Analog operating voltage
ADC or COMP used 1.62 -
3.6
DAC used 1.8 -
OPAMP used 2.0 -
VREFBUF used 1.8 -
ADC, DAC, OPAMP,
COMP, VREFBUF not
used
0 -
VBAT Backup operating voltage - 1.2 - 3.6
VIN I/O Input voltage
TT_xx I/O −0.3 - VDD+0.3
BOOT0 0 - 9
All I/O except BOOT0
and TT_xx −0.3 -
Min(VDD,
VDDA,
VDD33USB,
VDDMMC)
+3.6 V <
5.5 V(3)
VCORE
Internal regulator ON (LDO or SMPS)(4)
VOS3 (max frequency
88 MHz) 0.95 1.0 1.05
VOS2 (max frequency
160 MHz) 1.05 1.10 1.15
VOS1 (max frequency
225 MHz) 1.15 1.20 1.25
VOS0 (max frequency
280 MHz) 1.25 1.30 1.35
Regulator OFF: external VCORE voltage must be
supplied from external regulator on VCAP pins
VOS3 (max frquency
88 MHz) 0.97 1.0 1.05
VOS2 (max frequency
160 MHz) 1.07 1.10 1.15
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 84/234
Symbol Parameter Operating conditions Min Typ Max Unit
VCORE Regulator OFF: external VCORE voltage must be
supplied from external regulator on VCAP pins
VOS1 (max frequency
225 MHz) V
1.17 1.20 1.25
VOS0 (max frequency
280 MHz) 1.27 1.30 1.33
TAAmbient temperature for the suffix 6 version
Maximum power
dissipation –40 - 85
°C
Low-power
dissipation(5) –40 - 105
TJJunction temperature range VOS0 –40 - 105 °C
VOS3, VOS2, VOS1 –40 - 130
1. When a reset occurs, the functionality is guaranteed down to VPDRmax or to the specified VDDmin when the PDR is OFF. The
PDR can only be switched OFF though the PDR_ON pin that is not available in all packages (refer to
Table 7. STM32H7B3xI pin/ball definition)
2. Only for power-up sequence when the SMPS step-down converter is configured to supply the LDO.
3. This formula has to be applied on power supplies related to the I/O structures described by the pin definition table.
4. At startup, the external VCORE voltage must remain higher or equal to 1.10 V before disabling the internal regulator (LDO).
5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section x.x:
Thermal characteristics).
Table 23. Maximum allowed clock frequencies
Symbol (1)(2) Parameter VOS0 VOS1 VOS2 VOS3 Unit
fCPU CPU 280 225 160 88
MHz
fACLK AXI 280 225 160 88
fHCLK AHB 280 225 160 88
fPCLK APB 140 112.5 80 44
fTraceCK / fJTCK Trace / JTAG 40 35 40 20
fltdc_ker_ck LTDC 140 112.5 80 44
ffmc_ker_ck FMC 280 225 160 88
foctospi_ker_clk OCTOSPI1/2 280 225 160 88
fsdmmc_ker_ck SDMMC1/2 280 225 160 88
fDFSDM1_Aclk DFSDM1 140 112.5 80 44
fDFSDM1_Clk 140 112.5 80 44
fDFSDM2_Aclk DFSDM2 140 112.5 80 44
fDFSDM2_Clk 140 112.5 80 44
ffdcan_ker_ck FDCAN 140 112.5 80 44
fcec_ker_ck HDMI_CEC 66 66 66 44
fI2C_ker_ck I2C[1:4] 140 112.5 80 44
flptim_ker_ck LPTIM[1:3] 140 112.5 80 44
frcc_tim_ker_ck TIM[2:7],TIM[12:14] 280 225 160 88
frcc_tim_ker_ck PWM1,PWM8,TIM[15:17] 280 225 160 88
frng_clk RNG 140 112.5 80 44
fsai_a_ker_ck SAI1 150 150 80 80
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 85/234
Symbol (1)(2) Parameter VOS0 VOS1 VOS2 VOS3 Unit
fsai_b_ker_ck SAI1 150 150 80 80
MHz
fsai_a_ker_ck SAI2 150 150 80 80
fsai_b_ker_ck
fspdifrx_ker_ck SPDIFRX1 280 225 160 88
fspi_ker_ck SPI[1:6] 280 225 160 88
flpuart_ker_ck LPUART1 140 112.5 80 44
fusart_ker_ck USART1/2/3/6/10 280 225 160 88
fuart_ker_ck UART4/5/7/8/9 280 225 160 88
fadp_clk USBOTG 48 48 48 48
fulpi_ck USB1ULPI 66 66 66 66
fadc_ker_ck ADC1/2 50 50 50 50
fdac_pclk DAC1/2 140 112.5 80 44
frtc_ker_ck RTC 1 1 1 1
1. Guaranteed by design.
2. The maximum kernel clock frequencies can be limited by the maximum peripheral clock frequency (refer each peripheral
electrical characteristics).
Table 24. Supply voltage and maximum frequency configuration
Power scale VCORE source Max TJ (°C) Max frequency (MHz) Min VDD (V)
VOS0 LDO/SMPS 105 280 1.71
VOS1 LDO/SMPS 130 225 1.62
VOS2 LDO/SMPS 130 160 1.62
VOS3 LDO/SMPS 130 88 1.62
SVOS4 LDO/SMPS 130 N/A 1.62
SVOS5 LDO/SMPS 130 N/A 1.62
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 86/234
6.3.2 VCAP external capacitor
Stabilization for the embedded LDO regulator is achieved by connecting an external capacitor CEXT to the VCAPx
pin. CEXT is specified in Table 25. VCAP operating conditions. Two external capacitors must be connected to
VCAP pins (refer to Getting started with STM32H7A3/7B3 and STM32H7B0 hardware development (AN5307).
Figure 23. External capacitor CEXT
ESR
R Leak
C
1. Legend: ESR is the equivalent series resistance.
Table 25. VCAP operating conditions
When the internal LDO voltage regulator is switched OFF, the two 2.2 µF VCAP capacitors are not required. However all VCAPx
package pins must be connected together and it is recommended to add a ceramic filtering capacitor of 100 nF as close as
possible to each VCAPx pin.
Symbol Parameter Conditions
CEXT External capacitor for LDO enabled 2.2 µF(1)(2)
ESR ESR of external capacitor < 100 mΩ
1. This value corresponds to CEXT typical value. A variation of ±20% is tolerated.
2. If the VCAP3 pin is available (depending on the package), it must be connected to the other VCAP pins. No additional
capacitor is required.
6.3.3 SMPS step-down converter
The devices embed a high power efficiency SMPS step-down converter requiring external components. Refer to
Getting started with STM32H7A3/7B3 and STM32H7B0 hardware development (AN5307) for the required
components and tradeoffs.
Table 26. Characteristics of SMPS step-down converter external components
Symbol Parameter Conditions
CIN
Capacitance of external capacitor on VDDSMPS 4.7 µF
ESR of external capacitor 100 mΩ
Cfilt Capacitance of external capacitor on VLXSMPS pin 220 pF
COUT
Capacitance of external capacitor on VFBSMPS pin 10 µF
ESR of external capacitor 20 mΩ
L Inductance of external Inductor on VLXSMPS pin 2.2 µH
- Serial DC resistor 150 mΩ
ISAT DC current at which the inductance drops 30% from its value without current. 1.7 A
IRMS Average current for a 40 °C rise: rated current for which the temperature of the inductor is raised 40°C
by DC current 1.4 A
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 87/234
Table 27. SMPS step-down converter characteristics for external usage
Symbol Conditions Min Typ Max Unit
VDDSMPS(1) VOUT = 1.8 V 2.3 - 3.6 V
VOUT = 2.5 V 3 - 3.6
VOUT(2) IOUT=600 mA 2.25 2.5 2.75 V
1.62 1.8 1.98
IOUT
internal and external usage - - 600 mA
External usage only(3) - - 600
RDSON - 100 120 mΩ
IDDSMPS_Q Quiescent current - 220 - µA
TSMPS_START
VOUT = 1.8 V - 270 405 µs
VOUT = 2.5 V - 360 540
1. The switching frequency is 2.4 MHz±10%
2. Including line transient and load transient.
3. These characteristics are given for SMPSEXTHP bit is set in the PWR_CR3 register.
The SMPS current consumption can be determined using the following formula based on the maximum LDO
current consumption provided in Section 6.3.7 Supply current characteristics:
IDDSMPS =IDDLDO ×VCORE ÷VDD ×efficency
where
IDDLDO is the current in LDO configuration given in the following tables
VCORE is the digital core supply (VCAP)
Efficiency is defined in the following curves.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 88/234
Figure 24. SMPS efficicency vs load current in Run, Sleep and Stop mode with SVOS3 MR mode,
TJ = 30 °C
30
40
50
60
70
80
90
100
1 10 100 1000
VDDSMPS = 1.8V, VOS0
VDDSMPS = 3.3V, VOS0
VDDSMPS = 1.8V, VOS1
VDDSMPS = 3.3V, VOS1
VDDSMPS = 1.8V, VOS2
VDDSMPS = 3.3V, VOS2
VDDSMPS = 1.8V, VOS3
VDDSMPS = 3.3V, VOS3
Current (mA)
Efficiency (%)
Figure 25. SMPS efficiency vs load current in Run, Sleep and Stop mode with SVOS3 MR mode,
TJ = 130 °C
30
40
50
60
70
80
90
100
1 10 100 1000
VDDSMPS = 1.8V, VOS0
VDDSMPS = 3.3V, VOS0
VDDSMPS = 1.8V, VOS0
VDDSMPS = 3.3V, VOS0
VDDSMPS = 1.8V, VOS1
VDDSMPS = 3.3V, VOS1
VDDSMPS = 1.8V, VOS2
VDDSMPS = 3.3V, VOS2
VDDSMPS = 1.8V, VOS3
VDDSMPS = 3.3V, VOS3
Efficiency (%)
Current (mA)
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 89/234
Figure 26. SMPS efficiency vs load current in Stop and DStop modes (SVOS3 LP mode, SVOS4, SVOS5),
TJ = 30 °C
0
10
20
30
40
50
60
70
80
90
100
0.01 0.1 1 10 100
VDDSMPS = 1.8V, SVOS5
VDDSMPS = 3.3V, SVOS5
VDDSMPS = 1.8V, SVOS4
VDDSMPS = 3.3V, SVOS4
VDDSMPS = 1.8V, SVOS3
VDDSMPS = 3.3V, SVOS3
Efficiency (%)
Current (mA)
Figure 27. SMPS efficiency vs load current in Stop and DStop modes (SVOS3 LP mode, SVOS4, SVOS5),
TJ = 130 °C
0
10
20
30
40
50
60
70
80
90
100
0.01 0.1 1 10
VDDSMPS = 1.8V, SVOS5
VDDSMPS = 3.3V, SVOS5
VDDSMPS = 1.8V, SVOS4
VDDSMPS = 3.3V, SVOS4
VDDSMPS = 1.8V, SVOS3
VDDSMPS = 3.3V, SVOS3
Efficiency (%)
Current (mA)
100
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 90/234
Figure 28. SMPS efficiency vs load current in Stop and DStop2 modes (SVOS3 LP mode, SVOS4, SVOS5),
TJ = 30 °C
0
10
20
30
40
50
60
70
80
90
100
0.01 0.1 1 10
VDDSMPS = 1.8V, SVOS5
in Stop2 mode
VDDSMPS = 3.3V, SVOS5
in Stop2 mode
VDDSMPS = 1.8V, SVOS4
in Stop2 mode
VDDSMPS = 3.3V, SVOS4
in Stop2 mode
VDDSMPS = 1.8V, SVOS3
in Stop2 mode
VDDSMPS = 3.3V, SVOS3
in Stop2 mode
Efficiency (%)
Current (mA)
100
Figure 29. SMPS efficiency vs load current in Stop and DStop2 modes (SVOS3 LP mode, SVOS4, SVOS5),
TJ = 130 °C
0
10
20
30
40
50
60
70
80
90
100
0.01 0.1 1 10
VDDSMPS = 1.8V, SVOS5
in Stop2 mode
VDDSMPS = 3.3V, SVOS5
in Stop2 mode
VDDSMPS = 1.8V, SVOS4
in Stop2 mode
VDDSMPS = 3.3V, SVOS4
in Stop2 mode
VDDSMPS = 1.8V, SVOS3
in Stop2 mode
VDDSMPS = 3.3V, SVOS3
in Stop2 mode
Efficiency (%)
Current (mA)
100
6.3.4 Operating conditions at power-up / power-down
Subject to general operating conditions for TA.
Operating conditions at power-up / power-down (regulator ON)
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 91/234
Table 28. Operating conditions at power-up / power-down (regulator ON)
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 0
µs/V
VDD fall time rate 10
tVDDA
VDDA rise time rate 0
VDDA fall time rate 10
tVDDUSB
VDDUSB rise time rate 0
VDDUSB fall time rate 10
VDDMMC
VDDMMC rise time rate 0
VDDMMC fall time rate 10
6.3.5 Embedded reset and power control block characteristics
The parameters given in Table 29. Reset and power control block characteristics are derived from tests performed
under ambient temperature and VDD supply voltage conditions summarized in Table 22. General operating
conditions.
Table 29. Reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
tRSTTEMPO(1) Reset temporization after POR released - - 377 550 µs
VPOR/PDR Power-on/power-down reset threshold Rising edge(1) 1.62 1.67 1.71
V
Falling edge 1.58 1.62 1.68
VBOR1 Brown-out reset threshold 1 Rising edge 2.04 2.10 2.15
Falling edge 1.95 2.00 2.06
VBOR2 Brown-out reset threshold 2 Rising edge 2.34 2.41 2.47
Falling edge 2.25 2.31 2.37
VBOR3 Brown-out reset threshold 3 Rising edge 2.63 2.70 2.78
Falling edge 2.54 2.61 2.68
VPVD0 Programmable Voltage Detector threshold 0 Rising edge 1.90 1.96 2.01
Falling edge 1.81 1.86 1.91
VPVD1 Programmable Voltage Detector threshold 1 Rising edge 2.05 2.10 2.16
Falling edge 1.96 2.01 2.06
VPVD2 Programmable Voltage Detector threshold 2 Rising edge 2.19 2.26 2.32
Falling edge 2.10 2.15 2.21
VPVD3 Programmable Voltage Detector threshold 3 Rising edge 2.35 2.41 2.47
Falling edge 2.25 2.31 2.37
VPVD4 Programmable Voltage Detector threshold 4 Rising edge 2.49 2.56 2.62
Falling edge 2.39 2.45 2.51
VPVD5 Programmable Voltage Detector threshold 5 Rising edge 2.64 2.71 2.78
Falling edge 2.55 2.61 2.68
VPVD6 Programmable Voltage Detector threshold 6 Rising edge 2.78 2.86 2.94
Falling edge in Run mode 2.69 2.76 2.83
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 92/234
Symbol Parameter Conditions Min Typ Max Unit
VPOR/PDR Hysteresis for power-on/power-down reset Hysteresis in Run mode 43 mV
Vhyst_BOR_PVD Hysteresis voltage of BOR Hysteresis in Run mode 100 - mV
IDD_BOR_PVD(1) BOR and PVD consumption from VDD - - - 0.630 µA
IDD_POR_PDR POR and PDR consumption from VDD - 0.8 - 1.2
VAVM_0 Analog voltage detector for VDDA threshold 0 Rising edge 1.66 1.71 1.76
V
Falling edge 1.56 1.61 1.66
VAVM_1 Analog voltage detector for VDDA threshold 1 Rising edge 2.06 2.12 2.19
Falling edge 1.96 2.02 2.08
VAVM_2 Analog voltage detector for VDDA threshold 2 Rising edge 2.42 2.50 2.58
Falling edge 2.35 2.42 2.49
VAVM_3 Analog voltage detector for VDDA threshold 3 Rising edge 2.74 2.83 2.91
Falling edge 2.64 2.72 2.80
Vhyst_VDDA Hysteresis of VDDA voltage detector - - 100 - mV
IDD_PVM PVM consumption from VDD(1) - - - 0.25 µA
IDD_VDDA Voltage detector consumption on VDDA(1) Resistor bridge - - 2.5 µA
1. Guaranteed by design.
6.3.6 Embedded reference voltage
The parameters given in Table 30 are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 22. General operating conditions.
Table 30. Embedded reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT(1) Internal reference voltages −40 °C < TJ < 130 °C 1.180 1.216 1.255 V
tS_vrefint(2)(3) ADC sampling time when reading the internal
reference voltage - 4.3 - -
µs
tS_vbat(3) VBAT sampling time when reading the internal
VBAT reference voltage - 9 - -
tstart_vrefint(3) Start time of reference voltage buffer when
ADC is enable 4.4 µs
Irefbuf(3) Reference Buffer consumption for ADC VDD = 3.3 V 9 13.5 23 µA
ΔVREFINT(3) Internal reference voltage spread over the
temperature range −40 °C < TJ < 130 °C - 5 15 mV
Tcoeff Average temperature coefficient Average temperature
coefficient - 20 70 ppm/°C
VDDcoeff Average Voltage coefficient 3.0 V < VDD < 3.6 V - 10 1370 ppm/V
VREFINT_DIV1 1/4 reference voltage - - 25 -
% VREFINT
VREFINT_DIV2 1/2 reference voltage - - 50 -
VREFINT_DIV3 3/4 reference voltage - - 75 -
1. Guaranteed by design and tested in production at 3.3 V
2. The shortest sampling time for the application can be determined by multiple iterations.
3. Guaranteed by design.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 93/234
Table 31. Internal reference voltage calibration values
Symbol Parameter Memory address
VREFIN_CAL Raw data acquired at temperature of 30 °C, VDDA = 3.3 V 08FFF810 - 08FFF812
Table 32. USB regulator characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDD50USB Supply voltage - 4 5 5,5 V
IDD50USB Current consumption - - 13.5 - µA
VREGOUTV33V Regulated output voltage - 3 - 3.6 V
IOUT Output current load sinked by USB block - - - 20 mA
TWKUP Wakeup time - - 120 170 µs
6.3.7 Supply current characteristics
The current consumption is a function of several parameters and factors such as the operating voltage, ambient
temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program
location in memory and executed binary code.
The current consumption is measured as described in Figure 22. Current consumption measurement scheme.
All the run-mode current consumption measurements given in this section are performed with a CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in analog input mode.
All peripherals are disabled except when explicitly mentioned.
The Flash memory access time is adjusted with the minimum wait states number, depending on the fACLK
frequency (refer to the table “Number of wait states according to CPU clock (frcc_cpu_ck) frequency and
VCORE range” available in the reference manual).
When the peripherals are enabled, the AHB clock frequency is the CPU frequency divided by 2 and the APB
clock frequency is AHB clock frequency divided by 2.
The parameters given in the below tables are derived from tests performed under ambient temperature and
supply voltage conditions summarized in Table 22. General operating conditions.
The maximum current consumptions provided in the following tables are given for LDO regulator ON. To obtain
the maximum SMPS current consumption, the efficiency curves can be used with the maximum LDO current
consumption as entry value (refer to Section 6.3.3 SMPS step-down converter).
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 94/234
Table 33. Inrush current and inrush electric charge characteristics for LDO and SMPS
1. The typical values are given for VDDLDO = VDDSMPS = 3.3 V and for typical decoupling capacitor values of CEXT and COUT.
2. The product consumption on VDDCORE is not taken into account in the inrush current and inrush electric charge.
Symbol Parameter Conditions Min Typ Max Unit
IRUSH
Inrush current on voltage regulator power-on
(POR or wakeup from Standby)
on VDDLDO(1) - 55 96 (2)
mA
on VDDSMPS(3) SMPS supplies the VDDCORE - 25 92(4)
Inrush current on voltage regulator power-on
(POR) on VDDSMPS(3)
SMPS supplies internal LDO VOUT =
1.8 V(5) -
45
135(4)
SMPS supplies internal LDO VOUT =
2.5 V(5) -100(4)
SMPS supplies external circuit VOUT
= 1.8 V(5) -
25
70(4)
SMPS supplies external circuit VOUT
= 2.5 V(5) -50(4)
Inrush current on voltage regulator power-on
(wakeup from Standby) on VDDSMPS(3)
SMPS supplies internal LDO VOUT =
1.8 V - 70 200(4)
SMPS supplies internal LDO VOUT =
2.5 V - 95 210(4)
QRUSH
Inrush current on voltage regulator power-on
(POR or wakeup from Standby)
on VDDLDO(1) - 4.4 5.3(2)
μC
on VDDSMPS(3) SMPS supplies the VDDCORE - 2.9 7(2)
Inrush current on voltage regulator power-on
(POR) on VDDSMPS(3)
SMPS supplies internal LDO VOUT =
1.8 V(5) -
4.0
7.5(2)
SMPS supplies internal LDO VOUT =
2.5 V(5) -5.7(2)
SMPS supplies external circuit VOUT
= 1.8 V(5) -
2.9
5.2(2)
SMPS supplies external circuit VOUT
= 2.5 V(5) -4(2)
Inrush current on voltage regulator power-on
(wakeup from Standby) on VDDSMPS(3)
SMPS supplies internal LDO VOUT =
1.8 V - 8.0 15(2)
SMPS supplies internal LDO VOUT =
2.5 V - 14.5 20.5(2)
1. The inrush current and inrush electric charge on VDDLDO are not present in Bypass mode or when the
SMPS supplies VDDCORE.
2. The maximum value is given for the maximum decoupling capacitor CEXT.
3. The inrush current and inrush electric charge on VDDSMPS is not present if the external component (L or
COUT) is not present, that is if the SMPS is not used.
4. The maximum value is given for the maximum decoupling capacitor COUT and the minimum VDDSMPS
voltage.
5. The inrush current and inrush electric charge due to the transition from 1.2 V to the final VOUT value (1.8 V
or 2.5 V) is not taken into account.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 95/234
Table 34. Typical and maximum current consumption in Run mode, code with data processing running from ITCM,
regulator ON
Data are in DTCM for best computation performance. In this case, the cache has no influence on consumption.
Symbol
Parameter
Conditions frcc_cpu_ck
(MHz)
Typ
LDO
Typ
SMPS
Max(1)(2)
unit
TJ =
25 °C
TJ =
85 °C
TJ =
105 °C
TJ =
130 °C
IDD Supply current in
Run mode
All peripherals
disabled
VOS0 280 69.5 34.0 77 106 128 173
mA
225 56.5 27.5 64 92 114 159
VOS1
225 52.0 24.0 58 80 98 136
200 46.5 21.0 52 75 93 130
180 42 19.0 47 70 88 125
168 39 18.0 45 67 85 122
160 37.5 17.0 43 65 83 120
VOS2
160 34.0 14.5 38 56 70 101
144 30.5 13.0 35 52 67 97
88 19.0 8.5 23 41 55 85
VOS3
88 18.0 7.5 21 35 46 71
60 12.5 5.5 16 29 41 66
25 6.0 3.0 9 23 34 59
All peripherals
enabled
VOS0 280 133.5 63.5 142 173 196 242
225 108.0 51.5 115 146 168 214
VOS1 225 99.0 45.0 105 129 147 185
160 71.5 32.5 77 100 118 156
VOS2 160 65.0 27.5 69 87 102 132
88 41.5 17.5 45 63 77 108
VOS3 88 38.0 15.0 41 55 66 91
1. Guaranteed by characterization results, unless otherwise specified.
2. The maximum values are given for LDO regulator ON. Refer to Section 6.3.3 SMPS step-down
converterfor the SMPS maximum current consumption.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 96/234
Table 35. Typical and maximum current consumption in Run mode, code with data processing running from Flash
memory, cache ON
Symbol Parameter Conditions frcc_cpu_ck
(MHz)
Typ
LDO(1)
Typ
SMPS(1)
Max(1)(2)
unit
TJ =
25 °C
TJ=
85 °C
TJ =
105 °C
TJ =
130 °C
IDD Supply current in
Run mode
All peripherals
disabled
VOS0 280 69.0 33.5 77 106 128 173
mA
225 56.0 27.0 64 92 114 158
VOS1
225 51.5 23.5 58 80 98 136
200 46.5 21.5 52 75 92 129
180 42.0 19.0 47 70 88 125
168 39.0 18.0 45 67 85 122
160 37.5 17.0 43 65 83 120
VOS2
160 34.0 14.5 38 56 70 101
144 30.5 13.0 35 53 67 97
88 19.0 8.5 23 41 55 85
VOS3
88 17.5 7.5 21 35 46 71
60 12.5 5.0 16 29 41 66
25 6.0 2.5 9 23 34 59
All peripherals
enabled
VOS0 280 132.5 63.5 142 173 195 241
225 107.5 51.0 115 145 168 213
VOS1 225 99.0 44.5 105 129 147 185
160 71.5 32.5 77 100 118 155
VOS2 160 65.0 27.5 69 87 102 132
88 41.5 17.5 45 63 77 108
VOS3 88 38.0 15.0 41 55 66 91
1. Guaranteed by characterization results, unless otherwise specified.
2. The maximum values are given for LDO regulator ON. Refer to Section 6.3.3 SMPS step-down
converterfor the SMPS maximum current consumption.
Table 36. Typical and maximum current consumption in Run mode, code with data processing running from Flash
memory, cache OFF
Symbol Parameter Conditions frcc_cpu_ck
(MHz)
Typ
LDO(1)
Typ
SMPS(1)
Max(1)(2)
Unit
TJ =
25 °C
TJ =
85 °C
TJ =
105 °C
TJ =
130 °C
IDD Supply current in
Run mode
All peripherals
disabled
VOS0 280 56.0 28.0 63 91 113 157
mA
225 47.0 23.5 54 82 103 148
VOS1 225 43.0 21.0 49 71 89 126
160 34.0 16.5 39 62 79 116
VOS2 160 29.5 13.5 34. 51 65 96
88 18.5 9.0 23 40 54 84
VOS3 88 16.5 7.5 19 33 44 69
All peripherals
enabled VOS0 280 119.5 58.0 127 157 180 225
225 98.5 48.0 105 135 157 203
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 97/234
Symbol Parameter Conditions frcc_cpu_ck
(MHz)
Typ
LDO(1)
Typ
SMPS(1)
Max(1)(2)
Unit
TJ =
25 °C
TJ =
85 °C
TJ =
105 °C
TJ =
130 °C
IDD Supply current in
Run mode
All peripherals
enabled
VOS1 225
mA
90.5 42.0 96 120 138 176
160 68.0 32.0 73 96 114 152
VOS2 160 60.5 26.5 64 82 97 127
88 41.0 18.0 45 62 77 107
VOS3 88 36.5 15.0 39 53 64 89
1. Guaranteed by characterization results, unless otherwise specified.
2. The maximum values are given for LDO regulator ON. Refer to Section 6.3.3 SMPS step-down
converterfor the SMPS maximum current consumption.
Table 37. Typical consumption in Run mode and corresponding performance versus code position
Symbol Parameter
Conditions frcc_cpu_c k
(MHz) Coremark Typ
LDO
Typ
SMPS Unit LDO IDD/
Coremark
SMPS IDD/
Coremark Unit
Peripheral Code
IDD Supply current
in Run mode
All peripherals
disabled,
cache ON
ITCM 280 1414 69.5 33.8
mA
49.2 23.9
µA/
Coremark
FLASH 280 1414 69.0 33.4 48.8 23.6
AXI
SRAM 280 1414 69.5 33.6 49.2 23.8
AHB
SRAM 280 1414 70.0 33.7 49.5 23.8
SRD
SRAM 280 1414 70.0 33.7 49.5 23.8
All peripherals
disabled cache
OFF
ITCM 280 1414 69.5 33.8 49.2 23.9
FLASH 280 668 56.0 28.0 83.8 41.9
AXI
SRAM 280 668 62.5 30.2 93.6 45.2
AHB
SRAM 280 295 59.5 28.8 201.7 97.6
SRD
SRAM 280 295 59.0 28.5 200.0 96.6
Table 38. Typical current consumption in Autonomous mode
Symbol Parameter Conditions(1) frcc_hclk4 (AHB4) (MHz) Typ Unit
IDD Supply current in Autonomous mode Run, DStop mode VOS3 64 2.98 mA
Run, DStop2 mode VOS3 64 2.64
1. System in Run mode, CPU domain is DStop or DStop2 mode with memories of the CPU domain shut-off
enable or disable.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 98/234
Table 39. Typical current consumption in Sleep mode, regulator ON
Symbol Parameter Conditions frcc_cpu_ck
(MHz)
Typ
LDO
Typ
SMPS
Max(1)(2)
Unit
TJ =
25 °C
TJ =
85 °C
TJ =
105 °C
TJ=
130 °C
IDD(Sleep) Supply current in
Sleep mode
All peripherals
disabled
VOS0 280 18.1 13.0 23 51 72 115
mA
225 15.0 10.6 20 47 68 112
VOS1 225 13.7 9.3 18 40 57 93
160 10.3 6.8 14 36 53 90
VOS2 160 9.3 5.8 12 30 44 74
88 5.8 3.6 9 26 40 70
VOS3 88 5.2 3.0 8 21 32 57
1. Guaranteed by characterization results.
2. The maximum values are given for LDO regulator ON. Refer to Section 6.3.3 SMPS step-down
converterfor the SMPS maximum current consumption.
Table 40. Typical current consumption in System Stop mode
Symbol Parameter Conditions Typ
LDO
Typ
SMPS
Max(1)(2)
Unit
TJ =
25 °C
TJ =
85 °C
TJ =
105 °C
TJ=
130 °C
IDD(Stop)
Stop, DStop
Flash memory in low- power
mode, memory shut-off disable
SVOS3
Main(3) 0.540 0.487 2.33 14.36 24.52 46.29
mA
SVOS3 LP 0.495 0.193 2.27 14.21 24.28 45.94
SVOS4 0.370 0.137 1.59 10.58 18.52 35.90
SVOS5 0.245 0.090 0.98 7.18 13.10 26.61
Flash memory in normal mode,
memory shut-off disable
SVOS3
Main(3) 0.560 0.504 2.39 14.62 24.93 47.01
SVOS3 LP 0.515 0.209 2.33 14.47 24.69 46.65
SVOS4 0.390 0.153 1.65 10.84 18.93 36.62
SVOS5 0.245 0.090 1.04 7.43 13.51 27.32
Flash memory in low- power
mode, memory shut-off enable
SVOS3
Main(3) 0.530 0.481 2.31 14.23 24.27 45.71
SVOS3 LP 0.480 0.186 2.25 14.09 24.04 45.36
SVOS4 0.360 0.134 1.57 10.49 18.32 35.41
SVOS5 0.230 0.085 0.96 6.95 12.59 25.26
Flash memory in normal mode,
memory shut-off enable
SVOS3
Main(3) 0.550 0.498 2.37 14.50 24.68 46.43
SVOS3 LP 0.500 0.204 2.31 14.35 24.45 46.07
SVOS4 0.380 0.151 1.63 10.75 18.73 36.13
SVOS5 0.230 0.085 1.02 7.21 13.00 25.97
Stop, DStop2 Flash memory in low- power
mode, memory shut-off disable
SVOS3
Main(3) 0.161 0.343 0.32 1.67 2.86 5.58
SVOS3 LP 0.115 0.046 0.28 1.62 2.80 5.50
SVOS4 0.095 0.037 0.20 1.23 2.19 4.43
SVOS5 0.090 0.032 0.14 0.93 1.75 3.80
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 99/234
Symbol Parameter Conditions Typ
LDO
Typ
SMPS
Max(1)(2)
Unit
TJ =
25 °C
TJ =
85 °C
TJ =
105 °C
TJ=
130 °C
IDD(Stop) Stop, DStop2 Flash memory in low -power
mode, memory shut-off enable
SVOS3
Main(3)
mA
0.146 0.337 0.30 1.55 2.63 5.04
SVOS3 LP 0.100 0.040 0.26 1.51 2.58 4.96
SVOS4 0.085 0.033 0.19 1.15 2.01 3.98
SVOS5 0.075 0.028 0.12 0.80 1.46 3.02
1. Guaranteed by characterization results.
2. The maximum values are given for LDO regulator ON. Refer to Section 6.3.3 SMPS step-down
converterfor the SMPS maximum current consumption.
3. When the SMPS is ON, an additional consumption is observed. It is recommended to use LP SVOS3 to
optimize power consumption.
Table 41. Typical current consumption RAM shutoff in Stop mode
Symbol Parameter Conditions
Typ LDO
Unit
SVOS3 LP SVOS4 SVOS5
IDD(Stop) Stop, Dstop or Dstop2
AXISRAM1 shutoff power consumption (power consumption
reduction when AXISRAM1 shutoff is enabled) 3.00 1.80 3.00
µA
AXISRAM2 shutoff power consumption (power consumption
reduction when AXISRAM2 shutoff is enabled) 4.40 2.70 4.40
AXISRAM13 shutoff power consumption (power consumption
reduction when AXISRAM3 shutoff is enabled) 4.40 2.70 4.40
AHBSRAM1 shutoff power consumption (power consumption
reduction when AHBSRAM1 shutoff is enabled) 0.90 0.50 0.70
AHBSRAM2 shutoff power consumption (power consumption
reduction when AHBSRAM2 shutoff is enabled) 0.90 0.50 0.70
ITCM and ETM shutoff power consumption (power consumption
reduction when ITCM and ETM shutoff is enabled) 1.00 0.60 0.90
GFXMMU and JPEG shutoff power consumption (power
consumption reduction when GFXMMU and JPEG shutoff is
enabled)
0.20 0.10 0.10
High-speed interface USB and FDCAN shutoff power consumption
(power consumption reduction when High-speed interface USB and
FDCAN shutoff is enabled)
0.20 0.10 0.10
SRDSRAM shutoff power consumption (power consumption
reduction when SRDSRAM shutoff is enabled) 0.30 0.30 0.40
Table 42. Typical and maximum current consumption in Standby mode
Symbol Parameter
Conditions Typ Max (3.6V)(1)
Unit
Backup
SRAM
RTC &
LSE(2)
1.62
V
2.4
V(3) 3 V(3) 3.3
V(3)
TJ =
25 °C
TJ =
85 °C
TJ =
105 °C
TJ =
130 °C
IDD
(Standby)
Supply current in
Standby mode,
IWDG OFF
OFF OFF 1.97 2.76 3.02 3.30 4.0 11.0 22.0 57.0
µA
ON OFF 2.78 3.69 4.02 4.40 5.4 13.0 25.0 64.0
OFF ON 2.46 3.37 3.73 4.07 5.0 12.2 23.3 59.0
ON ON 3.27 4.30 4.73 5.17 6.4 14.2 26.3 66.0
1. Guaranteed by characterization results.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 100/234
2. The LSE clock is in low-drive mode.
3. These values are given for PDR ON. When the PDR is OFF (internal reset OFF), the typical current consumption is reduced
(refer to Section 6.3.5 Embedded reset and power control block characteristics).
Table 43. Typical and maximum current consumption in VBAT mode
Symbol Parameter
Conditions Typ Max (3.6V)(1)
Unit
Backup
SRAM
RTC &
LSE(2) 1.2 V 2 V 3 V 3.3 V TJ =
25 °C
TJ =
85 °C
TJ =
105 °C
TJ=
130 °C
IDD (VBAT) Supply current in
VBAT mode
OFF OFF 0.01 0.02 0.03 0.07 0.2 1.9 4.6 14
µA
ON OFF 0.85 0.93 1.05 1.14 1.5 3.6 7.5 20.0
OFF ON 0.50 0.63 0.74 0.84 1.2 3.1 5.9 16
ON ON 1.34 1.54 1.76 1.91 2.5 4.8 8.8 22.0
1. Guaranteed by characterization results.
2. The LSE clock is in low-drive mode.
I/O system current consumption
I/O static current consumption
All the I/Os used as inputs with pull-up generate a current consumption when the pin is externally held low. The
value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in
Table 65. I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to estimate the current
consumption.
An additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is
externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate
the input value. Unless this specific configuration is required by the application, this supply current consumption
can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should
be configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of
external electromagnetic noise. To avoid a current consumption related to floating pins, they must either be
configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-
up/down resistors or by configuring the pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 44. Peripheral current consumption in Run
mode), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it
uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the
capacitive load (internal or external) connected to the pin:
ISW=VDDx ×fsw ×CL
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDx is the MCU supply voltage
fSW is the I/O switching frequency
CL is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.
On-chip peripheral current consumption
The MCU is placed under the following conditions:
At startup, all I/O pins are in analog input configuration.
All peripherals are disabled unless otherwise mentioned.
The I/O compensation cell is enabled.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 101/234
frcc_cpu_ck is the CPU clock. fPCLK = frcc_cpu_ck/4, and fHCLK = frcc_cpu_ck/2.
The given value is calculated by measuring the difference of current consumption
with all peripherals clocked off
with only one peripheral clocked on
frcc_cpu_ck = 280 MHz (Scale 0), frcc_cpu_ck = 225 MHz (Scale 1), frcc_cpu_ck = 160 MHz (Scale 2), frcc_cpu_ck
= 88 MHz (Scale 3)
The ambient operating temperature is 25 °C and VDD=3.3 V.
Table 44. Peripheral current consumption in Run mode
Peripheral
IDD(Typ)
Unit
VOS0 VOS1 VOS2 VOS3
AHB3
MDMA 7.10 6.40 5.90 5.40
µA/MHz
DMA2D 3.00 2.80 2.50 2.30
JPGDEC 4.70 4.40 4.00 3.60
FLITF 20.00 19.00 17.00 15.00
FMC registers 1.30 1.30 1.20 1.10
FMC kernel 10.00 9.30 8.40 7.70
OSPI1 registers 0.50 0.60 0.50 0.50
OSPI1 kernel 2.30 2.20 2.00 1.80
SDMMC1 registers 8.90 8.30 7.60 6.90
SDMMC1 kernel 2.20 2.00 1.80 1.60
OSPI2 registers 0.70 0.70 0.70 0.60
OSPI2 kernel 2.00 1.80 1.60 1.50
IOMNGR 0.30 0.30 0.30 0.30
OTFDEC1 1.20 1.20 1.10 1.10
OTFDEC2 1.40 1.30 1.20 1.20
GFXMMU 2.80 2.70 2.40 2.30
AXISRAM2 5.30 5.00 4.60 4.20
AXISRAM3 5.40 5.10 4.60 4.30
DTCM1 1.10 1.10 1.00 1.00
DTCM2 0.70 0.80 0.70 0.70
ITCM 1.10 1.10 1.00 1.00
AXISRAM1 5.30 5.00 4.60 4.20
Bridge 0.10 0.10 0.10 0.10
AHB1
DMA1 0.90 0.90 0.80 0.70
DMA2 0.90 0.80 0.80 0.70
CRC 0.60 0.60 0.50 0.50
ADC12 registers 5.40 4.90 4.50 4.10
ADC12 kernel 1.10 1.00 0.90 0.80
USB1OTG registers 24.00 22.00 20.00 18.00
USB1OTG kernel 9.50 9.30 9.10 8.80
USB1ULPI 0.10 0.10 0.10 0.10
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 102/234
Peripheral
IDD(Typ)
Unit
VOS0 VOS1 VOS2 VOS3
AHB1 Bridge
µA/MHz
0.10 0.10 0.10 0.10
AHB2
CRYPT 1.50 1.40 1.30 1.20
HASH 1.80 1.60 1.50 1.30
DCMI 5.00 4.60 4.20 3.90
HSEM 0.10 0.10 0.10 0.10
RNG registers 1.50 1.40 1.20 1.10
RNG kernel 10.00 9.70 9.50 9.20
SDMMC2 registers 6.80 6.30 5.70 5.20
SDMMC2 kernel 2.30 2.10 1.90 1.70
BDMA1 1.70 1.60 1.50 1.30
AHBSRAM1 0.70 0.70 0.60 0.60
AHBSRAM2 0.70 0.60 0.60 0.50
Bridge 9.10 8.40 7.70 7.00
AHB4
GPIOA 2.00 1.80 1.70 1.50
GPIOB 1.80 1.70 1.50 1.40
GPIOC 2.00 1.80 1.70 1.50
GPIOD 2.00 1.80 1.70 1.50
GPIOE 1.90 1.80 1.60 1.50
GPIOF 1.90 1.80 1.60 1.50
GPIOG 2.00 1.80 1.70 1.50
GPIOH 1.90 1.80 1.60 1.50
GPIOI 1.90 1.80 1.60 1.50
GPIOJ 1.90 1.80 1.60 1.50
GPIOK 2.00 1.80 1.70 1.50
BDMA2 4.20 3.90 3.50 3.20
SRDSRAM 0.60 0.50 0.50 0.50
BKPRAM 0.80 0.70 0.70 0.60
IWDG 0.07 0.07 0.07 0.07
Bridge 0.10 0.10 0.10 0.10
APB3
LTDC 12.00 11.00 9.80 8.90
WWDG1 1.10 1.00 0.90 0.90
Bridge 0.10 0.10 0.10 0.10
APB1
TIM2 7.50 6.90 6.30 6.20
TIM3 6.30 5.90 5.40 4.90
TIM4 5.80 5.40 4.90 4.50
TIM5 7.20 6.70 6.10 5.60
TIM6 1.60 1.50 1.30 1.20
TIM7 1.60 1.40 1.30 1.20
TIM12 3.60 3.30 3.00 2.80
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 103/234
Peripheral
IDD(Typ)
Unit
VOS0 VOS1 VOS2 VOS3
APB1
TIM13
µA/MHz
2.80 2.60 2.40 2.10
TIM14 2.50 2.30 2.10 1.90
LPTIM1 registers 0.80 0.80 0.70 0.60
LPTIM1 kernel 2.20 2.00 1.80 1.70
SPI2 registers 2.20 2.00 1.80 1.70
SPI2 kernel 0.90 0.80 0.80 0.70
SPI3 registers 2.70 2.40 2.30 2.00
SPI3 kernel 0.90 0.80 0.70 0.70
SPDIFRX1 registers 0.60 0.50 0.50 0.40
SPDIFRX1 kernel 2.90 2.70 2.50 2.20
USART2 registers 2.00 1.80 1.70 1.50
USART2 kernel 4.60 4.30 3.90 3.60
USART3 registers 2.00 1.80 1.70 1.50
USART3 kernel 4.50 4.20 3.80 3.40
UART4 registers 1.70 1.60 1.50 1.30
UART4 kernel 3.70 3.40 3.10 2.80
UART5 registers 1.80 1.70 1.50 1.40
UART5 kernel 3.80 3.50 3.20 2.90
I2C1 registers 0.90 0.80 0.80 0.70
I2C1 kernel 2.10 2.00 1.80 1.70
I2C2 registers 0.90 0.80 0.70 0.70
I2C2 kernel 2.10 1.90 1.80 1.60
I2C3 registers 0.90 0.80 0.70 0.70
I2C3 kernel 2.20 2.00 1.80 1.70
HDMICEC registers 0.50 0.50 0.40 0.40
HDMICEC kernel 0.10 0.10 0.10 0.10
DAC1 1.40 1.30 1.20 1.10
UART7 registers 1.80 1.70 1.50 1.40
UART7 kernel 3.80 3.50 3.20 2.90
UART8 registers 2.10 2.00 1.80 1.70
UART8 kernel 3.80 3.50 3.20 2.90
Bridge 0.30 0.30 0.20 0.10
CRS 0.50 0.40 0.40 0.40
SWP registers 2.30 2.10 2.00 1.80
SWP kernel 0.10 0.10 0.10 0.10
OPAMP 4.20 3.80 3.50 3.20
MDIO 3.10 2.90 2.60 2.40
FDCAN registers 17.00 16.00 15.00 14.00
FDCAN kernel 5.60 4.80 3.50 1.10
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 104/234
Peripheral
IDD(Typ)
Unit
VOS0 VOS1 VOS2 VOS3
APB1 Bridge
µA/MHz
0.10 0.10 0.10 0.10
APB2
TIM1 9.80 9.10 8.30 7.60
TIM8 9.50 8.80 8.00 7.30
USART1 registers 0.10 0.10 0.10 0.10
USART1 kernel 0.10 0.10 0.10 0.10
USART6 registers 3.80 4.00 4.50 6.30
USART6 kernel 0.10 0.10 0.10 0.10
USART10 registers 4.00 4.10 4.60 6.40
USART10 kernel 0.10 0.10 0.10 0.10
UART9 registers 3.50 3.60 4.00 5.50
UART9 kernel 0.10 0.10 0.10 0.10
SPI1 registers 2.10 1.90 1.80 1.60
SPI1 kernel 0.90 0.80 0.70 0.70
SPI4 registers 2.10 1.90 1.70 1.50
SPI4 kernel 0.50 0.50 0.40 0.40
TIM15 5.30 4.90 4.40 4.00
TIM16 4.20 3.90 3.50 3.20
TIM17 4.30 4.00 3.60 3.30
SPI5 registers 2.00 1.90 1.70 1.50
SPI5 kernel 0.50 0.50 0.40 0.40
SAI1 registers 1.80 1.60 1.50 1.30
SAI1 kernel 1.40 1.30 1.20 1.00
SAI2 registers 2.30 2.10 1.90 1.70
SAI2 kernel 1.20 1.10 1.00 0.90
DFSDM1 registers 10.00 9.60 8.80 8.00
DFSDM1 kernel 0.10 0.10 0.10 0.10
Bridge 0.50 0.40 0.40 0.30
APB4
SYSCFG 0.40 0.30 0.30 0.30
LPUART1 registers 1.10 1.00 0.90 0.80
LPUART1 kernel 2.30 2.10 1.90 1.70
SPI6 registers 1.70 1.50 1.40 1.30
SPI6 kernel 0.60 0.50 0.50 0.40
I2C4 registers 0.80 0.70 0.60 0.60
I2C4 kernel 1.90 1.70 1.60 1.40
LPTIM2 registers 0.60 0.60 0.50 0.50
LPTIM2 kernel 1.90 1.70 1.60 1.40
LPTIM3 registers 0.60 0.50 0.50 0.40
LPTIM3 kernel 1.50 1.40 1.30 1.20
DAC2 0.80 0.70 0.60 0.50
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 105/234
Peripheral
IDD(Typ)
Unit
VOS0 VOS1 VOS2 VOS3
APB4
COMP12
µA/MHz
0.40 0.30 0.30 0.30
VREF 0.30 0.30 0.20 0.20
RTCAPB 1.90 1.70 1.60 1.40
TMPSENS 2.30 2.10 2.00 1.80
DFSDM2 registers 1.70 1.50 1.40 1.30
DFSDM2 kernel 0.10 0.10 0.10 0.10
Bridge 0.10 0.10 0.10 0.10
Table 45. Peripheral current consumption in Stop, Standby and VBAT mode
Symbol Parameter Conditions
Typ Max (3.6 V)
Unit
3.3 V TJ = 25 °C TJ= 85 °C TJ = 105 °C TJ = 130 °C
IDD
RTC+LSE low drive - 0.77 1.0 1.2 1.3 2.0
µA
RTC+LSE medium- low drive - 0.87 1.1 1.3 1.4 2.1
RTC+LSE medium- high drive - 1.03 1.3 1.5 1.6 2.3
RTC+LSE High drive - 1.38 1.6 1.8 1.9 2.6
Backup SRAM - 1.10 1.4 2.0 3.2 7.0
6.3.8 Wakeup time from low-power modes
The wakeup times given in Table 46. Low-power mode wakeup timings are measured starting from the wakeup
event trigger up to the first instruction executed by the CPU:
For Stop or Sleep modes: the wakeup event is WFE.
WKUP (PC1) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
Table 46. Low-power mode wakeup timings
Symbol Parameter Conditions Typ(1) Max(1)(2) Unit
tWUSLEEP(3) Wakeup from Sleep - 5.00 5.00 CPU clock
cycles
tWUDSTOP(3) Wakeup from DStop
SVOS3 Main, HSI, Flash memory in normal mode 4.2 6
µs
SVOS3 Main, HSI, Flash memory in low-power mode 8.3 11
SVOS3 LP, HSI, Flash memory in normal mode 5.0 7
SVOS3 LP, HSI, Flash memory in low-power mode 9.0 12
SVOS4, HSI, Flash memory in normal mode 15.7 19
SVOS4, HSI, Flash memory in low-power mode 19.7 25
SVOS5, HSI, Flash memory in normal mode 35.0 43
SVOS5, HSI, Flash memory in low-power mode 35.0 43
SVOS3 Main, CSI, Flash memory in normal mode 42.5 52
SVOS3 Main, CSI, Flash memory in low power mode 48.0 58
SVOS3 LP, CSI, Flash memory in normal mode 43.3 53
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 106/234
Symbol Parameter Conditions Typ(1) Max(1)(2) Unit
tWUDSTOP(3) Wakeup from DStop
SVOS3 LP, CSI, Flash memory in low power mode
µs
48.8 59
SVOS4, CSI, Flash memory in normal mode 54.0 65
SVOS4, CSI, Flash memory in low-power mode 59.5 72
SVOS5, CSI, Flash memory in normal mode 74.8 90
SVOS5, CSI, Flash memory in low-power mode 74.8 90
tWUDSTOP2(3) Wakeup from DStop2, clock kept
running
SVOS3 LP, HSI, Flash memory in low-power mode 9.7 13
SVOS4, HSI, Flash memory in low-power mode 20.4 26
SVOS5, HSI, Flash memory in low-power mode 35.7 44
SVOS3 LP, CSI, Flash memory in low-power mode 51.3 62
SVOS4, CSI, Flash memory in low-power mode 62.0 75
SVOS5, CSI, Flash memory in low-power mode 77.3 93
tWUSTDBY(3) Wakeup from Standby mode - 257 330
1. Guaranteed by characterization results.
2. Measures done at −40 °C in the worst conditions.
3. The wakeup times are measured from the wakeup event to the point in which the application code reads the
first instruction.
6.3.9 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode, the HSE oscillator is switched off and the input pin is a standard I/O.
The external clock signal has to respect Table 47. High-speed external user clock characteristics in addition to
Table 65. I/O static characteristics. The external clock can be low-swing (analog) or digital. In case of a low-swing
analog input clock, the clock squarer must be activated (refer to RM0455).
Table 47. High-speed external user clock characteristics
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
fHSE_ext User external clock source
frequency
External digital/analog
clock 4 25 50 MHz
VHSEH Digital OSC_IN input high-level
voltage External digital clock
0.7 VDD -VDD
V
VHSEL Digital OSC_IN input low-level
voltage VSS -0.3 VDD
tW(HSEH)/
tW(HSEL)(2)
Digital OSC_IN input high or low
time External digital clock 7 - - ns
VlswHSE (VHSEH
−VHSEL)(3)
Analog low-swing OSC_IN peak-
to-peak amplitude External analog low-swing
clock
0.2 - 2/3 VDD V
DuCyHSE Analog low-swing OSC_IN duty
cycle 45 50 55 %
tr(HSE)/tf(HSE) Analog low-swing OSC_IN rise
and fall times
External analog low-swing
clock, 10% to 90% 0.05 / fHSE_ext -0.3 / fHSE_ext ns
1. Guaranteed by design.
2. The rise and fall times for a digital input signal are not specified. However the VHSEH and VHSEL conditions must be fulfilled.
3. The DC component of the signal must ensure that the signal peaks are located between VDD and VSS.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 107/234
Figure 30. High-speed external clock source AC timing diagram
OS C _IN
External
STM32
clock source
VHSEH
tf(HSE) tW(HSE)
IL
90 %
10 %
THSE
t
tr(HSE) tW(HSE)
fHSE_ext
VHSEL
Low-speed external user clock generated from an external source
In bypass mode, the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal
has to respect Table 48. Low-speed external user clock characteristics in addition to Table 65. I/O static
characteristics. The external clock can be low-swing (analog) or digital. In case of a low-swing analog input clock,
the clock squarer must be activated (refer to RM0455).
Table 48. Low-speed external user clock characteristics
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
fLSE_ext User external clock source frequency External digital/analog clock - 32.768 1000 kHz
VLSEH Digital OSC32_IN input high-level voltage External digital clock
0.7 VDD -VDD V
VLSEL OSC32_IN input low-level voltage VSS -0.3 VDD
tw(LSEH)/ tw(LSEL) OSC32_IN high or low time External digital clock 250 - - ns
Vlsw_H Analog low-swing OSC_IN high-level voltage
External analog low-swing clock
0.6 - 1.225
V
Vlsw_L Analog low-swing OSC_IN low-level voltage 0.35 - 0.8
VlswLSE (VLSEH
−VLSEL)
Analog low-swing OSC_IN peak-to-peak
amplitude 0.2 - 0.875
DuCyLSE Analog low-swing OSC_IN duty cycle 45 50 55 %
tr(LSE)/tf(LSE) Analog low-swing OSC_IN rise and fall times External analog low-swing clock, 10%
to 90% - 100 200 ns
1. Guaranteed by design.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 108/234
Figure 31. Low-speed external clock source AC timing diagram
OSC32 _IN
External
STM32
clock source
VLSEH
tf(LSE) tW(LSE)
IL
90 %
10 %
TLSE
t
tr(LSE) tW(LSE)
fLSE_ext
VLSEL
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 50 MHz crystal/ceramic resonator oscillator. All
the information given in this paragraph are based on characterization results obtained with typical external
components specified in Table 49. 4-50 MHz HSE oscillator characteristics. In the application, the resonator and
the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output
distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the
resonator characteristics (frequency, package, accuracy).
Table 49. 4-50 MHz HSE oscillator characteristics
Symbol Parameter Operating conditions(1) Min(2) Typ(2) Max(2) Unit
F Oscillator frequency - 4 - 50 MHz
RFFeedback resistor - - 200 - kΩ
IDD(HSE) HSE current consumption
During startup(3) - - 4
mA
VDD=3 V, Rm=30 Ω
CL=10 pF at 4 MHz - 0.35 -
VDD=3 V, Rm=30 Ω
CL=10 pF at 8 MHz - 0.40 -
VDD=3 V, Rm=30 Ω
CL=10 pF at 16 MHz - 0.45 -
VDD=3 V, Rm=30 Ω
CL=10 pF at 32 MHz - 0.65 -
VDD=3 V, Rm=30 Ω
CL=10 pF at 48 MHz - 0.95 -
Gmcritmax Maximum critical crystal gm Startup - - 1.5 mA/V
tSU(4) Start-up time VDD is stabilized - 2 - ms
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by design.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 109/234
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer.
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range
(typical), designed for high-frequency applications, and selected to match the requirements of the crystal or
resonator (see Figure 32. Typical application with an 8 MHz crystal). CL1 and CL2 are usually the same size. The
crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. The
PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin
and board capacitance) when sizing CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Figure 32. Typical application with an 8 MHz crystal
OSC_ OU T
OSC_ IN fH S E
CL1
RF
STM32
8 MHz
resonator
Resonator with
integrated capacitors
Bias
controlled
gain
REXT (1)
CL2
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the
information given in this paragraph are based on characterization results obtained with typical external
components specified in Table 50. Low-speed external user clock characteristics. In the application, the resonator
and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output
distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the
resonator characteristics (frequency, package, accuracy).
Table 50. Low-speed external user clock characteristics
Symbol Parameter Operating conditions(1) Min(2) Typ(2) Max(2) Unit
F Oscillator frequency - - 32.768 - kHz
IDD LSE current consumption
LSEDRV[1:0] = 00,
Low drive capability - 290 -
nA
LSEDRV[1:0] = 01,
Medium Low drive capability - 390 -
LSEDRV[1:0] = 10,
Medium high drive capability - 550 -
LSEDRV[1:0] = 11,
High drive capability - 900 -
Gmcritmax Maximum critical crystal gm LSEDRV[1:0] = 00,
Low drive capability - - 0.5 µA/V
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 110/234
Symbol Parameter Operating conditions(1) Min(2) Typ(2) Max(2) Unit
Gmcritmax Maximum critical crystal gm
LSEDRV[1:0] = 01,
Medium Low drive capability
µA/V
- - 0.75
LSEDRV[1:0] = 10,
Medium high drive capability - - 1.7
LSEDRV[1:0] = 11,
High drive capability - - 2.7
tSU(3) Startup time VDD is stabilized - 2 - s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers.
2. Guaranteed by design.
3. tSU is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768k Hz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Figure 33. Typical application with a 32.768 kHz crystal
STM32
OSC32_OUT
fHSE
CL1
RF
32.768 kHz
resonator
Bias
controlled
gain
OSC32_IN
CL2
Resonator with
integrated capacitors
1. An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.
6.3.10 Internal clock source characteristics
The parameters given in Table 51. HSI48 oscillator characteristics to Table 54. LSI oscillator characteristics are
derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in
Table 22. General operating conditions.
48 MHz high-speed internal RC oscillator (HSI48)
Table 51. HSI48 oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSI48 HSI48 frequency VDD = 3.3 V, TJ = 30 °C 47.5(1) 48 48.5(1) MHz
TRIM(2) User trimming step - - 0.175 0.250 %
USER TRIM COVERAGE(3) User trimming coverage ± 32 steps ±4,70 ±5.6 %
DuCy(HSI48)(2) Duty cycle - 45 55 %
ACCHSI48_REL(3) Accuracy of the HSI48 oscillator over temperature
(reference is 30 °C) TJ = −40 to 130 °C −4.5 - 4 %
ΔVDD(HSI48)(2) HSI48 oscillator frequency drift with VDD (reference is
3.3 V) VDD = 3 to 3.6 V - 0.025 0.05 %
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 111/234
Symbol Parameter Conditions Min Typ Max Unit
ΔVDD(HSI48)(2) HSI48 oscillator frequency drift with VDD (reference is
3.3 V) VDD = 1.62 to 3.6 V %
- 0.05 0.1
tsu(HSI48)(2) HSI48 oscillator startup time - - 2.1 4.0 µs
IDD(HSI48)(2) HSI48 oscillator power consumption - - 350 400 µA
NT jitter(2) Next transition jitter accumulated jitter on 28 cycles - - ± 0.15 - ns
PT jitter(2) Paired transition jitter Accumulated jitter on 56 cycles(6) - - ± 0.25 - ns
1. Calibrated during manufacturing tests.
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. ΔfHSI = ACCHSI48_REL + ΔVDD
5. These values are obtained by using the formula: (Freq(3.6 V) − Freq(3.0 V)) / Freq(3.0 V) or (Freq(3.6 V) −
Freq(1.62 V)) / Freq(1.62 V).
6. Jitter measurements are performed without clock sources activated in parallel.
64 MHz high-speed internal RC oscillator (HSI)
Table 52. HSI oscillator characteristics
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
fHSI HSI frequency VDD=3.3 V, TJ=30 °C 63.7(2) 64 64.3(2) MHz
TRIM HSI user trimming step
Trimming is not a multiple of 32 - 0.24 0.32
%
Trimming is 128, 256 and 384 −5.2 −1.8 -
Trimming is 64, 192, 320 and 448 −1.4 −0.8 -
Other trimming are a multiple of 32 (not
including multiple of 64 and 128) −0.6 −0.25 -
DuCy(HSI) Duty Cycle - 45 - 55 %
ΔVDD (HSI) HSI oscillator frequency drift over VDD (reference
is 3.3 V) VDD=1.62 to 3.6 V −0.12 - 0.03 %
ΔTEMP (HSI) HSI oscillator frequency drift over temperature
(reference is 64 MHz)
TJ=-20 to 105 °C −1(3) -1(3)
%
TJ=−40 to TJmax °C −2(3) -1(3)
tsu(HSI) HSI oscillator start-up time - - 1.4 2 µs
tstab(HSI) HSI oscillator stabilization time at 1 % of target frequency - 4 8 µs
at 5 % of target frequency - - 4
IDD(HSI) HSI oscillator power consumption - - 300 400 µA
1. Guaranteed by design, unless otherwise specified.
2. Calibrated during manufacturing tests.
3. Guaranteed by characterization results.
4 MHz low-power internal RC oscillator (CSI)
Table 53. CSI oscillator characteristics
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
fCSI CSI frequency VDD = 3.3 V, TJ = 30 °C 3.96(2) 44.04(2) MHz
TRIM CSI user trimming step Trimming is not a multiple of 16 0.40 0.75
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 112/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
TRIM CSI user trimming step
Trimming is a multiple of 32 −4,75 −2,75 0.75
Other trimming are a multiple of 16 (not
including multiple of 32) −0,43 0.00 0.75 %
DuCy(CSI) Duty Cycle - 45 - 55 %
TEMP (CSI) CSI oscillator frequency drift over temperature
TJ = 0 to 85 °C −3.7(3) 4,5(3)
%
TJ = −40 to 130 °C −11(3) 7,5(3)
∆VDD(CSI) CSI oscillator frequency drift over VDD VDD = 1.62 to 3.6 V −0.06 0.06 %
tsu(CSI) CSI oscillator startup time - - 1 2 µs
tstab(CSI) CSI oscillator stabilization time (to reach ± 3 % of
fCSI)- - - 4 cycle
IDD(CSI) CSI oscillator power consumption - - 23 30 µA
1. Guaranteed by design, unless otherwise specified.
2. Calibrated during manufacturing tests.
3. Guaranteed by characterization results.
Low-speed internal (LSI) RC oscillator
Table 54. LSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSI LSI frequency
VDD = 3.3 V, TJ = 25 °C 31,4(1) 32 32,6(1)
kHz
TJ = –40 to 110 °C, VDD = 1.62 to 3.6 V 29,76(2) 33,6(2)
TJ = –40 to 130 °C, VDD = 1.62 to 3.6 V 29,4(2) -33,6(2)
tsu(LSI)(3) LSI oscillator startup time - - 80 130
µs
tstab(LSI)(3) LSI oscillator stabilization time (5% of final
value) - - 120 170
IDD(LSI)(3) LSI oscillator power consumption - - 130 280 nA
1. Calibrated during manufacturing tests.
2. Guaranteed by characterization results.
3. Guaranteed by design.
6.3.11 PLL characteristics
The parameters given in Table 55. PLL characteristics (wide VCO frequency range) are derived from tests
performed under temperature and VDD supply voltage conditions summarized in Table 22. General operating
conditions.
Table 55. PLL characteristics (wide VCO frequency range)
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
fPLL_IN
PLL input clock - 2 - 16 MHz
PLL input clock duty cycle - 10 - 90 %
fPLL_P_OUT PLL multiplier output clock P, Q, R
VOS0 1 - 280(2)
MHz
VOS1 1 - 225(2)
VOS2 1 - 160(2)
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 113/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
fPLL_P_OUT PLL multiplier output clock P, Q, R VOS3 MHz
1 - 88(2)
fVCO_OUT PLL VCO output - 128 - 560(3)
tLOCK PLL lock time Normal mode - 45 100(3)
µs
Sigma-delta mode (fPLL_IN ≥ 8 MHz) - 60 120(3)
Jitter
Cycle-to-cycle jitter
fVCO_OUT = 128 MHz - 60 -
±ps
fVCO_OUT = 200 MHz - 50 -
fVCO_OUT = 400 MHz - 20 -
fVCO_OUT = 560 MHz - 15 -
Long term jitter
Normal mode (f PLL_IN = 2 MHz), fVCO_OUT = 560 MHz - ±0.2 -
%
Normal mode (f PLL_IN = 16 MHz), fVCO_OUT = 560 MHz - ±0.8 -
Sigma-delta mode (f PLL_IN = 2 MHz), fVCO_OUT = 560 MHz - ±0.2 -
Sigma-delta mode (f PLL_IN = 16 MHz), fVCO_OUT = 560 MHz - ±0.8 -
IDD(PLL) PLL power consumption
fVCO_OUT = 560 MHz VDD - 330 420
µA
VCORE - 630 -
fVCO_OUT = 128 MHz VDD - 155 230
VCORE - 170 -
1. Guaranteed by design, unless otherwise specified.
2. This value must be limited to the maximum frequency due to the product limitation.
3. Guaranteed by characterization results.
Table 56. PLL characteristics (medium VCO frequency range)
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
fPLL_IN
PLL input clock - 1 - 2 MHz
PLL input clock duty cycle - 10 - 90 %
fPLL_OUT PLL multiplier output clock P, Q, R
VOS0 1.17 - 210
VOS1 1.17 - 210
MHz
VOS2 1.17 - 160(2)
VOS3 1.17 - 88(2)
fVCO_OUT PLL VCO output - 150 - 420
tLOCK PLL lock time Normal mode - 45 80(3)
µs
Sigma-delta mode forbidden
Jitter
Cycle-to-cycle jitter
fVCO_OUT = 150 MHz - - 60 -
±ps
fVCO_OUT = 200 MHz - - 40 -
fVCO_OUT = 400 MHz - - 18 -
fVCO_OUT = 420 MHz - - 15 -
Period jitter
fVCO_OUT = 150 MHz fPLL_OUT = 50 MHz - 75 - ±-ps
fVCO_OUT = 400 MHz - 25 -
Long term jitter Normal mode, fVCO_OUT = 400 MHz - ±0.2 - %
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 114/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
IDD(PLL) PLL power consumption on VDD
fVCO_OUT = 420 MHz VDD - 275 360
µA
VCORE - 450 -
fVCO_OUT = 150 MHz VDD - 160 240
VCORE - 165 -
1. Guaranteed by design, unless otherwise specified.
2. This value must be limited to the maximum frequency due to the product limitation.
3. Guaranteed by characterization results.
6.3.12 Memory characteristics
Flash memory
The characteristics are given at TJ = –40 to 130 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
Table 57. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Word program - 2.5 4
mASector erase - 1.8 3
Mass erase - 2.0 3
Table 58. Flash memory programming
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
tprog Word program time 128 bits (user area) - - 20 µs
16 bits (OTP area) - - 20
tERASE8KB Sector erase time (8 Kbytes) - - - 2.2
ms
tME
Singe-bank mass erase time - - 10
Dual-bank mass erase time - - 10
Vprog Programming voltage 1.62 - 3.6 V
1. Guaranteed by characterization results.
Table 59. Flash memory endurance and data retention
Symbol Parameter Conditions
Value
Unit
Min(1)
NEND Endurance TJ = –40 to +130 °C 10 kcycles
tRET
Data retention 1 kcycle at TA = 85 °C 30 Years
10 kcycles at TA = 55 °C 20
1. Guaranteed by characterization results.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 115/234
6.3.13 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed
by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional
disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF
capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 60. EMS characteristics. They are based on the EMS levels and classes
defined in application note AN1709.
Table 60. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD Voltage limits to be applied on any I/O pin to induce
a functional disturbance VDD = 3.3 V, TA = +25 °C, LQFP144, frcc_cpu_ck =
216 MHz, conforms to IEC 61000-4-2
3B
VFTB
Fast transient voltage burst limits to be applied
through 100 pF on VDD and VSS pins to induce a
functional disturbance
5A
As a consequence, it is recommended to add a serial resistor (1 kΏ) located as close as possible to the MCU to
the pins exposed to noise (connected to tracks longer than 50 mm on PCB).
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment
and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user
application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation
with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually
forcing a low state on the NRST pin or the Oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values.
When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring
(see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code,
is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the
pin loading.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 116/234
Table 61. EMI characteristics
Symbol Parameter Conditions Monitored frequency
band
Max vs. [fHSE/
fCPU]Unit
8/216 MHz
SEMI Peak level VDD = 3.6 V, TA = 25 °C, LQFP144 package, conforming to
IEC61967-2
0.1 to 30 MHz 12
dBµV
30 to 130 MHz 17
130 MHz to 1 GHz 15
1 GHz to 2 GHz 14
EMI Level 3.5 -
6.3.14 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to
determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse) are applied to the pins of each sample according to
each pin combination. This test conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESDA/JEDEC JS-002
standards.
Table 62. ESD absolute maximum ratings
Symbol Ratings Conditions Packages Class Maximum
value Unit
VESD(HBM) Electrostatic discharge voltage
(human body model)
TA = +25 °C conforming to ANSI/ESDA/
JEDEC JS-001
Packages with SMPS 1C 1000(2)
V
Packages without
SMPS 2 2000
VESD(CDM) Electrostatic discharge voltage
(charge device model)
TA = +25 °C conforming to ANSI/ESDA/
JEDEC JS-002
All LQFP packages
and WLCSP C1 250
All BGA packages C2a 500
1. Guaranteed by characterization results.
2. The electrostatic discharge is 2000 V for all pins, except VFBSMPS, for which the test fails at 2000 V and
passes at 1600 V.
Static latchup
Two complementary static tests are required on six parts to assess the latchup performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with JESD78 IC latchup standard.
Table 63. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latchup class TJ= +130 °C, conforming to JESD78 II level A
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 117/234
6.3.15 I/O current injection characteristics
As a general rule, a current injection to the I/O pins, due to external voltage below VSS or above VDD (for
standard, 3.3 V-capable I/O pins) should be avoided during the normal product operation. However, in order to
give an indication of the robustness of the microcontroller in cases when an abnormal injection accidentally
happens, susceptibility tests are performed on a sample basis during the device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins
programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked
for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE),
out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other
functional failure (for example reset, oscillator frequency deviation).
The following tables are the compilation of the SIC1/SIC2 and functional ESD results.
Negative induced A negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
Table 64. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative injection Positive injection
IINJ
PF2, PI12 0 NA
mA
PG1, PE9, PB0, PA7, PC4, PC5, PE7, PE8, PA4, PA5, PA6, PF2, PI12, PC2_C,
PC3_C, PA0_C, PA1_C, BOOT0 0 0
All other I/Os 5 NA
6.3.16 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 65. I/O static characteristics are derived from tests
performed under the conditions summarized in Table 22. General operating conditions. All I/Os are CMOS and
TTL compliant (except for BOOT0).
Note: For information on GPIO configuration, refer to the application note AN4899 “STM32 GPIO configuration for
hardware settings and low-power consumption” available from the ST website www.st.com.
Table 65. I/O static characteristics
Symbol Parameter Condition Min Typ Max Unit
VIL
I/O input low-level voltage except BOOT0
1.62 V < VDDIOx < 3.6 V
- - 0.3VDD (1)
V
I/O input low-level voltage except BOOT0 - - 0.4VDD−0.1(2)
BOOT0 I/O input low level voltage - - 0.19VDD+0.1(2)
VIH
I/O input high level voltage except BOOT0
1.62 V < VDDIOx < 3.6 V
0.7VDD (1) - -
VI/O input high level voltage except BOOT0 0.47VDD+0.25(2) - -
BOOT0 I/O input high level voltage 0.17VDD+0.6(2) - -
VHYS(2) TT_xx, FT_xxx and NRST I/O input hysteresis 1.62 V < VDDIOx < 3.6 V - 250 - mV
BOOT0 I/O input hysteresis - 200 -
Ileak FT_xx input leakage current(2)
0 < VIN ≤ Max(VDDxxx)(5) - - ±250
nA
Max(VDDxxx) < VIN ≤ 5.5 V (3)(4)(5) - - 1500
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 118/234
Symbol Parameter Condition Min Typ Max Unit
Ileak
FT_u I/O
0 < VIN ≤ Max(VDDxxx)(5)
nA
- - ±350
Max(VDDxxx) < VIN ≤ 5.5 V (3)(4)(8)(5) - - 5000(6)
TT_xx input leakage current 0 < VIN ≤ Max(VDDxxx)(5) - - ±250
VPP (BOOT0 alternate function)
0 < VIN ≤ VDDIOx - - 15 uA
VDDIOx < VIN ≤ 9 V - - 35
RPU Weak pull-up equivalent resistor(7) VIN = VSS 30 40 50 kΩ
RPD Weak pull-down equivalent resistor(7) VIN = VDD(5) 30 40 50
CIO I/O pin capacitance - - 5 - pF
1. Compliant with CMOS requirements.
2. Guaranteed by design.
3. All FT_xx IO except FT_lu and FT_u.
4. VIN must be less than Max(VDDxxx) + 3.6 V.
5. Max(VDDxxx) is the maximum value of all the I/O supplies.
6. To sustain a voltage higher than MIN(VDD, VDDA, VDD33USB) +0.3 V, the internal pull-up and pull-down
resistors must be disabled.
7. The pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/
NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10%).
All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than
the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in
Figure 34. VIL/VIH for all I/Os except BOOT0.
Figure 34. VIL/VIH for all I/Os except BOOT0
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 119/234
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA
(with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to respect the absolute
maximum rating specified in Section 6.2 Absolute maximum ratings. In particular:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU
sourced on VDD, cannot exceed the absolute maximum rating ΣIVDD (see Table 20. Current characteristics).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk
on VSS cannot exceed the absolute maximum rating ΣIVSS (see Table 20. Current characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in Table 66. Output voltage characteristics for all I/Os except
PC13, PC14, PC15 and PI8 and Table 67. Output voltage characteristics for PC13, PC14, PC15 and PI8 are
derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in
Table 22. General operating conditions. All I/Os are CMOS and TTL compliant.
Table 66. Output voltage characteristics for all I/Os except PC13, PC14, PC15 and PI8
The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 19. Voltage
characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the
absolute maximum ratings ΣIIO.
Symbol Parameter Conditions(1) Min Max Unit
VOL Output low level voltage
CMOS port(2)
IIO=8 mA
2.7 V≤ VDD ≤3.6 V
- 0.4
V
VOH Output high level voltage
CMOS port(2)
IIO= −8 mA
2.7 V≤ VDD ≤3.6 V
VDD−0.4 -
VOL(1) Output low level voltage
TTL port(2)
IIO=8 mA
2.7 V≤ VDD ≤3.6 V
- 0.4
VOH(1) Output high level voltage
TTL port(2)
IIO=-8 mA
2.7 V≤ VDD ≤3.6 V
2.4 -
VOL(1) Output low level voltage IIO=20 mA
2.7 V≤ VDD ≤3.6 V - 1.3
VOH(1) Output high level voltage IIO=−20 mA
2.7 V≤ VDD ≤3.6 V VDD−1.3 -
VOL(1) Output low level voltage IIO= 4 mA
1.62 V≤ VDD ≤3.6 V - 0.4
VOH (1) Output high level voltage IIO= −4 mA 1.62 V≤VDD<3.6 V VDD−0.4 -
VOLFM+(1) Output low level voltage for an FTf I/O pin in FM+ mode
IIO= 20 mA
2.3 V≤ VDD≤3.6 V - 0.4
IIO= 10 mA
1.62 V≤ VDD ≤3.6 V - 0.4
1. Guaranteed by design.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 120/234
Table 67. Output voltage characteristics for PC13, PC14, PC15 and PI8
The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 19. Voltage
characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the
absolute maximum ratings ΣIIO.
Symbol Parameter Conditions(1) Min Max Unit
VOL Output low level voltage CMOS port(2) IIO=8 mA, 2.7 V≤ VDD ≤ 3.6 V 0.4
V
VOH Output high level voltage CMOS port(2) IIO= −8 mA, 2.7 V≤ VDD
≤ 3.6 V VDD−0.4
VOL(1) Output low level voltage TTL port(2) IIO = 8 mA, 2.7 V≤ VDD ≤ 3.6 V 0.4
VOH(1) Output high level voltage TTL port(2) IIO=−8 mA, 2.7 V ≤ VDD ≤ 3.6 V 2.4
VOL(1) Output low level voltage IIO=20 mA, 2.7 V ≤ VDD ≤ 3.6 V 1.3
VOH(1) Output high level voltage IIO = −20 mA, 2.7 V ≤ VDD ≤ 3.6 V VDD−1.3
VOL(1) Output low level voltage IIO = 4 mA, 1.62 V ≤ VDD ≤ 3.6 V 0.4
VOH (1) Output high level voltage IIO = −4 mA, 1.62 V ≤ VDD < 3.6 V VDD−-0.4
VOLFM+ (1) Output low level voltage for an FT_f I/O pin
in FM+ mode
IIO = 20 mA, 2.3 V ≤ VDD ≤ 3.6 V - 0.4
IIO = 10 mA, 1.62 V ≤ VDD ≤ 3.6 V - 0.4
1. Guaranteed by design.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
Output buffer timing characteristics (HSLV option disabled)
The HSLV bit of SYSCFG_CCCSR register can be used to optimize the I/O speed when the product voltage is
below 2.7 V.
Table 68. Output timing characteristics (HSLV OFF)
Speed Symbol Parameter conditions Min(1) Max(1) Unit
00
Fmax(2) Maximum frequency
C=50 pF, 2.7 V≤ VDD≤3.6 V - 12
MHz
C=50 pF, 1.62 V≤VDD≤2.7 V - 3
C=30 pF, 2.7 V≤VDD≤3.6 V - 12
C=30 pF, 1.62 V≤VDD≤2.7 V - 3
C=10 pF, 2.7 V≤VDD≤3.6 V - 16
C=10 pF, 1.62 V≤VDD≤2.7 V - 4
tr/tf (3) Output high to low level fall time and output low to
high level rise time
C=50 pF, 2.7 V≤ VDD≤3.6 V - 16.6
ns
C=50 pF, 1.62 V≤VDD≤2.7 V - 33.3
C=30 pF, 2.7 V≤VDD≤3.6 V - 13.3
C=30 pF, 1.62 V≤VDD≤2.7 V - 25
C=10 pF, 2.7 V≤VDD≤3.6 V - 10
C=10 pF, 1.62 V≤VDD≤2.7 V - 20
01 Fmax(2) Maximum frequency
C=50 pF, 2.7 V≤ VDD≤3.6 V - 60
MHz
C=50 pF, 1.62 V≤VDD≤2.7 V - 15
C=30 pF, 2.7 V≤VDD≤3.6 V - 80
C=30 pF, 1.62 V≤VDD≤2.7 V - 15
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 121/234
Speed Symbol Parameter conditions Min(1) Max(1) Unit
01
Fmax(2) Maximum frequency C=10 pF, 2.7 V≤VDD≤3.6 V MHz
- 110
C=10 pF, 1.62 V≤VDD≤2.7 V - 20
tr/tf (3) Output high to low level fall time and output low to
high level rise time
C=50 pF, 2.7 V≤ VDD≤3.6 V - 5.2
ns
C=50 pF, 1.62 V≤VDD≤2.7 V - 10
C=30 pF, 2.7 V≤VDD≤3.6 V - 4.2
C=30 pF, 1.62 V≤VDD≤2.7 V - 7.5
C=10 pF, 2.7 V≤VDD≤3.6 V - 2.8
C=10 pF, 1.62 V≤VDD≤2.7 V - 5.2
10
Fmax(2) Maximum frequency
C=50 pF, 2.7 V≤VDD≤3.6 V(4) - 85
MHz
C=50 pF, 1.62 V≤VDD≤2.7 V(4) - 35
C=30 pF, 2.7 V≤VDD≤3.6 V(4) - 110
C=30 pF, 1.62 V≤VDD≤2.7 V(4) - 40
C=10 pF, 2.7 V≤VDD≤3.6 V(4) - 166
C=10 pF, 1.62 V≤VDD≤2.7 V(4) - 100
tr/tf (3) Output high to low level fall time and output low to
high level rise time
C=50 pF, 2.7 V≤VDD≤3.6 V(4) - 3.8
ns
C=50 pF, 1.62 V≤VDD≤2.7 V(4) - 6.9
C=30 pF, 2.7 V≤VDD≤3.6 V(4) - 2.8
C=30 pF, 1.62 V≤VDD≤2.7 V(4) - 5.2
C=10 pF, 2.7 V≤VDD≤3.6 V(4) - 1.8
C=10 pF, 1.62 V≤VDD≤2.7 V(4) - 3.3
11(5)
Fmax(2) Maximum frequency
C=50 pF, 2.7 V≤VDD≤3.6 V(4) - 100
MHz
C=50 pF, 1.62 V≤VDD≤2.7 V(4) - 50
C=30 pF, 2.7 V≤VDD≤3.6 V(4) - 133
C=30 pF, 1.62 V≤VDD≤2.7 V(4) - 66
C=10 pF, 2.7 V≤VDD≤3.6 V(4) - 220
C=10 pF, 1.62 V≤VDD≤2.7 V(4) - 85
tr/tf (3) Output high to low level fall time and output low to
high level rise time
C=50 pF, 2.7 V≤VDD≤3.6 V(4) - 3.3
ns
C=50 pF, 1.62 V≤VDD≤2.7 V(4) - 6.6
C=30 pF, 2.7 V≤VDD≤3.6 V(4) - 2.4
C=30 pF, 1.62 V≤VDD≤2.7 V(4) - 4.5
C=10 pF, 2.7 V≤VDD≤3.6 V(4) - 1.5
C=10 pF, 1.62 V≤VDD≤2.7 V(4) - 2.7
1. Guaranteed by design.
2. The maximum frequency is defined with the following conditions: (tr+tf) ≤ 2/3 T, skew ≤ 1/20 T, 45%<Duty cycle<55%
3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
4. Compensation system enabled.
5. Reserved for output clock only.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 122/234
Output buffer timing characteristics (HSLV option enabled)
Table 69. Output timing characteristics (HSLV ON)
Speed Symbol Parameter conditions Min(1) Max(1) Unit
00
Fmax(2) Maximum frequency
C=50 pF, 1.62 V≤VDD≤2.7 V - 10
MHzC=30 pF, 1.62 V≤VDD≤2.7 V - 10
C=10 pF, 1.62 V≤VDD≤2.7 V - 10
tr/tf(3) Output high to low level fall time and output low to
high level rise time
C=50 pF, 1.62 V≤VDD≤2.7 V - 11
nsC=30 pF, 1.62 V≤VDD≤2.7 V - 9
C=10 pF, 1.62 V≤VDD≤2.7 V - 6.6
01
Fmax(2) Maximum frequency
C=50 pF, 1.62 V≤VDD≤2.7 V - 50
MHzC=30 pF, 1.62 V≤VDD≤2.7 V - 58
C=10 pF, 1.62 V≤VDD≤2.7 V - 66
tr/tf(3) Output high to low level fall time and output low to
high level rise time
C=50 pF, 1.62 V≤VDD≤2.7 V - 6.6
nsC=30 pF, 1.62 V≤VDD≤2.7 V - 4.8
C=10 pF, 1.62 V≤VDD≤2.7 V - 3
10
Fmax(2) Maximum frequency
C=50 pF, 1.62 V≤VDD≤2.7 V(4) - 55
MHz
C=30 pF, 1.62 V≤VDD≤2.7 V(4) - 80
C=10 pF, 1.62 V≤VDD≤2.7 V(4) - 133
tr/tf(3) Output high to low level fall time and output low to
high level rise time
C=50 pF, 1.62 V≤VDD≤2.7 V(4) - 5.8
ns
C=30 pF, 1.62 V≤VDD≤2.7 V(4) - 4
C=10 pF, 1.62 V≤VDD≤2.7 V(4) - 2.4
11(5)
Fmax(2) Maximum frequency
C=50 pF, 1.62 V≤VDD≤2.7 V(4) - 60
MHz
C=30 pF, 1.62 V≤VDD≤2.7 V(4) - 90
C=10 pF, 1.62 V≤VDD≤2.7 V(4) - 175
tr/tf(3) Output high to low level fall time and output low to
high level rise time
C=50 pF, 1.62 V≤VDD≤2.7 V(4) - 5.3
ns
C=30 pF, 1.62 V≤VDD≤2.7 V(4) - 3.6
C=10 pF, 1.62 V≤VDD≤2.7 V(4) - 1.9
1. Guaranteed by design.
2. The maximum frequency is defined with the following conditions: (tr+tf) ≤ 2/3 T, skew ≤ 1/20 T, 45%<Duty cycle<55%
3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
4. Compensation system enabled.
5. Reserved for output clock only.
6.3.17 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see
Table 65. I/O static characteristics).
Unless otherwise specified, the parameters given in Table 70. NRST pin characteristics are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized in Table 22. General
operating conditions.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 123/234
Table 70. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
RPU(1) Weak pull-up equivalent resistor(2) VIN = VSS 30 40 50
VF(NRST)(1) NRST Input filtered pulse 1.71 V < VDD < 3.6 V - - 50
ns
VNF(NRST)(1) NRST Input not filtered pulse
1.71 V < VDD < 3.6 V 350 - -
1.62 V < VDD < 3.6 V 1000 - -
1. Guaranteed by design.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10%).
Figure 35. Recommended NRST pin protection
STM32
RPU
NRST (2)
VDD
Filter
Internal Reset
0.1 µF
External
reset circuit (1)
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 65. I/O static characteristics. Otherwise the reset is not taken into account by the device.
6.3.18 FMC characteristics
Unless otherwise specified, the parameters given in the below tables for the FMC interface are derived from tests
performed under the ambient temperature, fHCLK frequency and VDD supply voltage conditions summarized in
Table 22. General operating conditions, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD ≤ 2.7 V
VOS level set to VOS0.
Note: At VOS1, the performance in some FMC modes can be degraded by up to 5 % compared to VOS0. This is
indicated by a footnote when applicable.
Refer to Section 6.3.16 I/O port characteristics for more details on the input/output alternate function
characteristics.
Asynchronous waveforms and timings
Figure 36 through Figure 38 represent asynchronous waveforms and Table 71 through Table 78 provide the
corresponding timings. The results shown in these tables are obtained with the following FMC configuration:
AddressSetupTime = 0x1
AddressHoldTime = 0x1
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)
BusTurnAroundDuration = 0x0
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 124/234
Capacitive load CL = 30 pF
In all timing tables, Tfmc_ker_ck is the kernel clock period.
Figure 36. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
Data
FMC_NE
FMC_NBL[1:0]
FMC_D[15:0]
tv(BL_NE)
th(Data_NE)
FMC_NOE
Address
FMC_A[25:0]
tv(A_NE)
FMC_NWE
tsu(Data_NE)
tw(NE)
w(NOE)
ttv(NOE_NE) th(NE_NOE)
t
h(Data_NOE)
th(A_NOE)
th(BL_NOE)
tsu(Data_NOE)
FMC_NADV (1)
tv(NADV_NE)
tw(NADV)
FMC_NWAIT
tsu(NWAIT_NE)
th(NE_NWAIT)
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
Table 71. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings
Symbol Parameter Min(1) Max(1) Unit
tw(NE) FMC_NE low time 3Tfmc_ker_ck − 1 3Tfmc_ker_ck +1
ns
tv(NOE_NE) FMC_NEx low to FMC_NOE low 0 0.5
tw(NOE) FMC_NOE low time 2Tfmc_ker_ck − 1 2Tfmc_ker_ck + 1
th(NE_NOE) FMC_NOE high to FMC_NE high hold time 0 -
tv(A_NE) FMC_NEx low to FMC_A valid - 0.5
th(A_NOE) Address hold time after FMC_NOE high 0 -
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 125/234
Symbol Parameter Min(1) Max(1) Unit
tsu(Data_NE)
ns
Data to FMC_NEx high setup time 13 -
tsu(Data_NOE) Data to FMC_NOEx high setup time 11 -
th(Data_NOE) Data hold time after FMC_NOE high 0 -
th(Data_NE) Data hold time after FMC_NEx high 0 -
tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0
tw(NADV) FMC_NADV low time - Tfmc_ker_ck + 1
1. Guaranteed by characterization results.
Table 72. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings
NWAIT pulse width is equal to 1 AHB cycle.
Symbol Parameter Min(1) Max(1) Unit
tw(NE) FMC_NE low time 7Tfmc_ker_ck +1 7Tfmc_ker_ck +1
ns
tw(NOE) FMC_NWE low time 5Tfmc_ker_ck −1 5Tfmc_ker_ck +1
tw(NWAIT) FMC_NWAIT low time Tfmc_ker_ck −1 −0.5
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 4Tfmc_ker_ck +9 -
th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 3Tfmc_ker_ck+12 -
1. Guaranteed by characterization results.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 126/234
Figure 37. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
NBL
Data
FMC_NEx
FMC_NBL[1:0]
FMC_D[15:0]
tv(BL_NE)
th(Data_NWE)
FMC_NOE
Address
FMC_A[25:0]
tv(A_NE)
tw(NWE)
FMC_NWE
tv(NWE_NE) th(NE_NWE)
th(A_NWE)
th(BL_NWE)
tv(Data_NE)
tw(NE)
FMC_NADV(1)
tv(NADV_NE)
tw(NADV)
FMC_NWAIT
tsu(NWAIT_NE)
th(NE_NWAIT)
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
Table 73. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings
Symbol Parameter Min(1) Max(1) Unit
tw(NE) FMC_NE low time 3Tfmc_ker_ck − 1 3Tfmc_ker_ck + 1
ns
tv(NWE_NE) FMC_NEx low to FMC_NWE low Tfmc_ker_ck − 1 Tfmc_ker_ck
tw(NWE) FMC_NWE low time Tfmc_ker_ck − 0.5 Tfmc_ker_ck + 0.5
th(NE_NWE) FMC_NWE high to FMC_NE high hold time Tfmc_ker_ck -
tv(A_NE) FMC_NEx low to FMC_A valid - 2
th(A_NWE) Address hold time after FMC_NWE high Tfmc_ker_ck + 0.5 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 0.5
th(BL_NWE) FMC_BL hold time after FMC_NWE high Tfmc_ker_ck − 0.5 -
tv(Data_NE) Data to FMC_NEx low to Data valid - Tfmc_ker_ck + 3
th(Data_NWE) Data hold time after FMC_NWE high Tfmc_ker_ck+1 -
tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 127/234
Symbol Parameter Min(1) Max(1) Unit
tw(NADV) ns
FMC_NADV low time - Tfmc_ker_ck + 1
1. Guaranteed by characterization results.
Table 74. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings
NWAIT pulse width is equal to 1 AHB cycle.
Symbol Parameter Min(1) Max(1) Unit
tw(NE) FMC_NE low time 8Tfmc_ker_ck − 1 8Tfmc_ker_ck + 1
ns
tw(NWE) FMC_NWE low time 6Tfmc_ker_ck − 1 6Tfmc_ker_ck + 1
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5Tfmc_ker_ck + 13 -
th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4Tfmc_ker_ck+ 12 -
1. Guaranteed by characterization results.
Figure 38. Asynchronous multiplexed PSRAM/NOR read waveforms
NBL
Data
FMC_NBL[1:0]
FMC_AD[15:0]
tv(BL_NE)
th(Data_NE)
Address
FMC_A[25:16]
tv(A_NE)
FMC_NWE
tv(A_NE)
Address
FMC_NADV
tv(NADV_NE)
tw(NADV)
tsu(Data_NE)
th(AD_NADV)
FMC_NE
FMC_NOE
tw(NE)
tw(NOE)
tv(NOE_NE) th(NE_NOE)
th(A_NOE)
th(BL_NOE)
t
su(Data_NOE) th(Data_NOE)
FMC_NWAIT
tsu(NWAIT_NE)
th(NE_NWAIT)
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 128/234
Table 75. Asynchronous multiplexed PSRAM/NOR read timings
Symbol Parameter Min(1) Max(1) Unit
tw(NE) FMC_NE low time 4Tfmc_ker_ck − 1 4Tfmc_ker_ck + 1
ns
tv(NOE_NE) FMC_NEx low to FMC_NOE low 2Tfmc_ker_ck 2Tfmc_ker_ck + 0.5
tw(NOE) FMC_NOE low time Tfmc_ker_ck − 1 Tfmc_ker_ck + 1
th(NE_NOE) FMC_NOE high to FMC_NE high hold time 0 -
tv(A_NE) FMC_NEx low to FMC_A valid - 0.5
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0 0.5
tw(NADV) FMC_NADV low time Tfmc_ker_ck − 0.5 Tfmc_ker_ck+1
th(AD_NADV) FMC_AD(address) valid hold time after FMC_NADV high Tfmc_ker_ck + 0.5 -
th(A_NOE) Address hold time after FMC_NOE high Tfmc_ker_ck − 0.5 -
tsu(Data_NE) Data to FMC_NEx high setup time 13 -
tsu(Data_NOE) Data to FMC_NOE high setup time 11 -
th(Data_NE) Data hold time after FMC_NEx high 0 -
th(Data_NOE) Data hold time after FMC_NOE high 0 -
1. Guaranteed by characterization results.
Table 76. Asynchronous multiplexed PSRAM/NOR read - NWAIT timings
Symbol Parameter Min(1) Max(1) Unit
tw(NE) FMC_NE low time 8Tfmc_ker_ck − 1 8Tfmc_ker_ck + 1
ns
tw(NOE) FMC_NWE low time 5Tfmc_ker_ck − 1 5Tfmc_ker_ck + 1
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 4Tfmc_ker_ck + 9 -
th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4Tfmc_ker_ck + 12 -
1. Guaranteed by characterization results.
Table 77. Asynchronous multiplexed PSRAM/NOR write timings
Symbol Parameter Min(1) Max(1) Unit
tw(NE) FMC_NE low time 4Tfmc_ker_ck − 1 4Tfmc_ker_ck
ns
tv(NWE_NE) FMC_NEx low to FMC_NWE low Tfmc_ker_c − 1 Tfmc_ker_ck + 0.5
tw(NWE) FMC_NWE low time 2Tfmc_ker_ck− 0.5 2Tfmc_ker_ck + 0.5
th(NE_NWE) FMC_NWE high to FMC_NE high hold time Tfmc_ker_ck − 0.5 -
tv(A_NE) FMC_NEx low to FMC_A valid - 0
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0 0.5
tw(NADV) FMC_NADV low time Tfmc_ker_ck Tfmc_ker_ck+ 1
th(AD_NADV) FMC_AD(address) valid hold time after FMC_NADV high Tfmc_ker_ck + 0.5 -
th(A_NWE) Address hold time after FMC_NWE high Tfmc_ker_ck + 0.5 -
th(BL_NWE) FMC_BL hold time after FMC_NWE high Tfmc_ker_ck − 0.5 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 0.5
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 129/234
Symbol Parameter Min(1) Max(1) Unit
tv(Data_NADV) ns
FMC_NADV high to Data valid - Tfmc_ker_ck + 2
th(Data_NWE) Data hold time after FMC_NWE high Tfmc_ker_ck+0.5 -
1. Guaranteed by characterization results.
Table 78. Asynchronous multiplexed PSRAM/NOR write - NWAIT timings
Symbol Parameter Min(1) Max(1) Unit
tw(NE) FMC_NE low time 9Tfmc_ker_ck − 1 9Tfmc_ker_ck
ns
tw(NWE) FMC_NWE low time 7Tfmc_ker_ck − 0.5 7Tfmc_ker_ck + 0.5
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5Tfmc_ker_ck + 9 -
th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4Tfmc_ker_ck + 12 -
1. Guaranteed by characterization results.
Synchronous waveforms and timings
Figure 39 through Figure 42 represent synchronous waveforms and Table 79 through Table 82 provide the
corresponding timings. The results shown in these tables are obtained with the following FMC configuration:
BurstAccessMode = FMC_BurstAccessMode_Enable
MemoryType = FMC_MemoryType_CRAM
WriteBurst = FMC_WriteBurst_Enable
CLKDivision = 1
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
In all timing tables, Tfmc_ker_ck is the kernel clock period, with the following FMC_CLK maximum values:
For 2.7 V < VDD < 3.6 V, FMC_CLK = 125 MHz at 20 pF
For 1.8 V < VDD < 1.9 V, FMC_CLK = 100 MHz at 20 pF
For 1.62 V < VDD<1.8 V, FMC_CLK = 100 MHz at 15 pF
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 130/234
Figure 39. Synchronous multiplexed NOR/PSRAM read timings
FMC_CLK
FMC_NEx
FMC_NADV
FMC_A[25:16]
FMC_NOE
FMC_AD[15:0] AD[15:0] D1 D2
FMC_NWAIT
(WAITCFG = 1b,
WAITPOL + 0b)
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
BUSTURN = 0
td(CLKL-NExL) td(CLKH-NExH)
td(CLKL-NADVL)
td(CLKL-AV)
td(CLKL-NADVH)
td(CLKH-AIV)
td(CLKL-NOEL) td(CLKH-NOEH)
td(CLKL-ADV)
td(CLKL-ADIV)
tsu(ADV-CLKH)
th(CLKH-ADV)
tsu(ADV-CLKH) th(CLKH-ADV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
Table 79. Synchronous multiplexed NOR/PSRAM read timings
Symbol Parameter Min(1) Max(1)(2) Unit
tw(CLK) FMC_CLK period 2Tfmc_ker_ck –0.5 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2
td(CLKH_NExH) FMC_CLK high to FMC_NEx high (x= 0…2) Tfmc_ker_ck+1.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2.0
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) Tfmc_ker_ck+1.5 -
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low - 1.5
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high Tfmc_ker_ck +1.5 -
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 3
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 -
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 131/234
Symbol Parameter Min(1) Max(1)(2) Unit
tsu(ADV-CLKH)
ns
FMC_A/D[15:0] valid data before FMC_CLK high 2 -
th(CLKH-ADV) FMC_A/D[15:0] valid data after FMC_CLK high 1.5 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 2 -
1. Guaranteed by characterization results.
2. At VOS1, these values are degraded by up to 5 %.
Figure 40. Synchronous multiplexed PSRAM write timings
FMC_CLK
FMC_NEx
FMC_NADV
FMC_A[25:16]
FMC_NWE
FMC_AD[15:0] AD[15:0] D1 D2
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
BUSTURN = 0
td(CLKL-NExL) td(CLKH-NExH)
td(CLKL-NADVL)
td(CLKL-AV)
td(CLKL-NADVH)
td(CLKH-AIV)
td(CLKH-NWEH)
td(CLKL-NWEL)
td(CLKH-NBLH)
td(CLKL-ADV)
td(CLKL-ADIV) td(CLKL-Data)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
td(CLKL-Data)
FMC_NBL
Table 80. Synchronous multiplexed PSRAM write timings
Symbol Parameter Min(1) Max(1)(2) Unit
tw(CLK) FMC_CLK period 2Tfmc_ker_ck –1 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x =0..2) - 2
td(CLKH-NExH) FMC_CLK high to FMC_NEx high Tfmc_ker_ck +1.5 -
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 132/234
Symbol Parameter Min(1) Max(1)(2) Unit
(x = 0…2)
ns
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1.5
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV)
FMC_CLK low to FMC_Ax valid
(x =16…25) - 2
td(CLKH-AIV)
FMC_CLK high to FMC_Ax invalid
(x =16…25) Tfmc_ker_ck +1.5 -
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 1.5
t(CLKH-NWEH) FMC_CLK high to FMC_NWE high Tfmc_ker_ck +1 -
td(CLKL-ADV) FMC_CLK low to to FMC_AD[15:0] valid - 2.5
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 -
td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low - 3
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low - 2
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high Tfmc_ker_ck +0.5 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 2 -
1. Guaranteed by characterization results.
2. At VOS1, these values are degraded by up to 5 %.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 133/234
Figure 41. Synchronous non-multiplexed NOR/PSRAM read timings
FMC_CLK
FMC_NEx
FMC_A[25:0]
FMC_NOE
FMC_D[15:0] D1 D2
FMC_NWAIT
(WAITCFG = 1b,
WAITPOL + 0b)
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
td(CLKL-NExL) td(CLKH-NExH)
td(CLKL-AV) td(CLKH-AIV)
td(CLKL-NOEL) td(CLKH-NOEH)
tsu(DV-CLKH) th(CLKH-DV)
tsu(DV-CLKH) th(CLKH-DV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
FMC_NADV
td(CLKL-NADVL) td(CLKL-NADVH)
Table 81. Synchronous non-multiplexed NOR/PSRAM read timings
Symbol Parameter Min(1) Max(1)(2) Unit
tw(CLK) FMC_CLK period 2Tfmc_ker_ck –0.5 -
ns
t(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2
td(CLKH-NExH)
FMC_CLK high to FMC_NEx high
(x= 0…2) Tfmc_ker_ck+1.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1.5
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) Tfmc_ker_ck+1.5 -
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low - 1.5
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high Tfmc_ker_ck+1 -
tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high 2 -
th(CLKH-DV) FMC_D[15:0] valid data after FMC_CLK high 1.5 -
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 134/234
Symbol Parameter Min(1) Max(1)(2) Unit
t(NWAIT-CLKH) ns
FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 2 -
1. Guaranteed by characterization results.
2. At VOS1, these values are degraded by up to 5 %.
Figure 42. Synchronous non-multiplexed PSRAM write timings
FMC_CLK
FMC_NEx
FMC_A[25:0]
FMC_NWE
FMC_D[15:0] D1 D2
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b)
tw(CLK) tw(CLK)
Data latency = 0
td(CLKL-NExL) td(CLKH-NExH)
td(CLKL-AV) td(CLKH-AIV)
td(CLKH-NWEH)
td(CLKL-NWEL)
td(CLKL-Data)
tsu(NWAITV-CLKH)
th(CLKH-NWAITV)
FMC_NADV
td(CLKL-NADVL) td(CLKL-NADVH)
td(CLKL-Data)
FMC_NBL
td(CLKH-NBLH)
Table 82. Synchronous non-multiplexed PSRAM write timings
Symbol Parameter Min(1) Max(1)(2) Unit
t(CLK) FMC_CLK period 2Tfmc_ker_ck − 0.5 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2
t(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) Tfmc_ker_ck + 1.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1.5
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) Tfmc_ker_ck + 1.5 -
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 135/234
Symbol Parameter Min(1) Max(1)(2) Unit
td(CLKL-NWEL)
ns
FMC_CLK low to FMC_NWE low - 1.5
td(CLKH-NWEH) FMC_CLK high to FMC_NWE high Tfmc_ker_ck + 1 -
td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low - 3
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low - 2
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high Tfmc_ker_ck + 0.5 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 2 -
1. Guaranteed by characterization results.
2. At VOS1, these values are degraded by up to 5 %.
NAND controller waveforms and timings
Figure 43 through Figure 46 represent synchronous waveforms, and Table 83 and Table 84 provide the
corresponding timings. The results shown in this table are obtained with the following FMC configuration:
COM.FMC_SetupTime = 0x01
COM.FMC_WaitSetupTime = 0x03
COM.FMC_HoldSetupTime = 0x02
COM.FMC_HiZSetupTime = 0x01
ATT.FMC_SetupTime = 0x01
ATT.FMC_WaitSetupTime = 0x03
ATT.FMC_HoldSetupTime = 0x02
ATT.FMC_HiZSetupTime = 0x01
Bank = FMC_Bank_NAND
MemoryDataWidth = FMC_MemoryDataWidth_16b
ECC = FMC_ECC_Enable
ECCPageSize = FMC_ECCPageSize_512Bytes
TCLRSetupTime = 0
TARSetupTime = 0
Capacitive load CL = 30 pF
In all timing tables, Tfmc_ker_ck is the kernel clock period.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 136/234
Figure 43. NAND controller waveforms for read access
FMC_NWE
FMC_NOE (NRE)
FMC_D[15:0]
tsu(D-NOE) th(NOE-D)
ALE (FMC_A17)
CLE (FMC_A16)
FMC_NCEx
td(ALE-NOE) th(NOE-ALE)
Figure 44. NAND controller waveforms for write access
th(NWE-D)
tv(NWE-D)
FMC_NWE
FMC_NOE (NRE)
FMC_D[15:0]
ALE (FMC_A17)
CLE (FMC_A16)
FMC_NCEx
td(ALE-NWE) th(NWE-ALE)
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 137/234
Figure 45. NAND controller waveforms for common memory read access
FMC_NWE
FMC_NOE
FMC_D[15:0]
tw(NOE)
tsu(D-NOE) th(NOE-D)
ALE (FMC_A17)
CLE (FMC_A16)
FMC_NCEx
td(ALE-NOE) th(NOE-ALE)
Figure 46. NAND controller waveforms for common memory write access
tw(NWE)
th(NWE-D)
tv(NWE-D)
FMC_NWE
FMC_NOE
FMC_D[15:0]
td(D-NWE)
ALE (FMC_A17)
CLE (FMC_A16)
FMC_NCEx
td(ALE-NOE) th(NOE-ALE)
Table 83. Switching characteristics for NAND Flash memory read cycles
Symbol Parameter Min(1) Max(1) Unit
tw(N0E) FMC_NOE low width 4Tfmc_ker_ck – 0.5 4Tfmc_ker_ck+0.5
ns
tsu(D-NOE) FMC_D[15-0] valid data before FMC_NOE high 8 -
th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high 0 -
td(ALE-NOE) FMC_ALE valid before FMC_NOE low - 3Tfmc_ker_ck +0.5
th(NOE-ALE) FMC_NWE high to FMC_ALE invalid 4Tfmc_ker_ck –1 -
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 138/234
1. Guaranteed by characterization results.
Table 84. Switching characteristics for NAND Flash write cycles
Symbol Parameter Min(1) Max(1) Unit
tw(NWE) FMC_NWE low width 4Tfmc_ker_ck – 0.5 4Tfmc_ker_ck +0.5
ns
tv(NWE-D) FMC_NWE low to FMC_D[15-0] valid 0 -
th(NWE-D) FMC_NWE high to FMC_D[15-0] invalid 2Tfmc_ker_ck + 1.5 -
td(D-NWE) FMC_D[15-0] valid before FMC_NWE high 5Tfmc_ker_ck – 2 -
td(ALE-NWE) FMC_ALE valid before FMC_NWE low - 3Tfmc_ker_ck +0.5
th(NWE-ALE) FMC_NWE high to FMC_ALE invalid 2Tfmc_ker_ck + 0.5 -
1. Guaranteed by characterization results.
SDRAM waveforms and timings
In all timing tables, Tfmc_ker_ck is the kernel clock period, with the following FMC_SDCLK maximum values:
For 2.7 V < VDD <3.6 V: FMC_CLK =110 MHz at 20 pF
For 1.8 V < VDD <1.9 V: FMC_CLK =100 MHz at 20 pF
For 1.62 V <DD <1.8 V, FMC_CLK =100 MHz at 15 pF
Figure 47. SDRAM read access waveforms (CL = 1)
Row n Col1
FMC_SDCLK
FMC_A[12:0]
FMC_SDNRAS
FMC_SDNCAS
FMC_SDNWE
FMC_D[31:0]
FMC_SDNE[1:0]
td(SDCLKL_AddR) td(SDCLKL_AddC)
th(SDCLKL_AddR)
th(SDCLKL_AddC)
td(SDCLKL_SNDE)
tsu(SDCLKH_Data) th(SDCLKH_Data)
Col2 Coli Coln
Data2 Datai DatanData1
th(SDCLKL_SNDE)
td(SDCLKL_NRAS)
td(SDCLKL_NCAS) th(SDCLKL_NCAS)
th(SDCLKL_NRAS)
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 139/234
Table 85. SDRAM read timings
Symbol Parameter Min(1) Max(1)(2) Unit
tw(SDCLK) FMC_SDCLK period 2Tfmc_ker_ck – 1 2Tfmc_ker_ck +0.5
ns
tsu(SDCLKH _Data) Data input setup time 2 -
th(SDCLKH_Data) Data input hold time 1 -
td(SDCLKL_Add) Address valid time - 1.5
td(SDCLKL- SDNE) Chip select valid time - 2
th(SDCLKL_SDNE) Chip select hold time 0.5 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 2
th(SDCLKL_SDNRAS) SDNRAS hold time 0.5 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 0.5
th(SDCLKL_SDNCAS) SDNCAS hold time 0 -
1. Guaranteed by characterization results.
2. At VOS1, these values are degraded by up to 5 %.
Table 86. LPSDRAM read timings
Symbol Parameter Min(1) Max(1)(2) Unit
tW(SDCLK) FMC_SDCLK period 2Tfmc_ker_ck – 1 2Tfmc_ker_ck+0.5
ns
tsu(SDCLKH_Data) Data input setup time 2 -
th(SDCLKH_Data) Data input hold time 1.5 -
td(SDCLKL_Add) Address valid time - 3.5
td(SDCLKL_SDNE) Chip select valid time - 2.5
th(SDCLKL_SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS SDNRAS valid time - 1
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 1.5
th(SDCLKL_SDNCAS) SDNCAS hold time 0 -
1. Guaranteed by characterization results.
2. At VOS1, these values are degraded by up to 5 %.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 140/234
Figure 48. SDRAM write access waveforms
Row n Col1
FMC_SDCLK
FMC_A[12:0]
FMC_SDNRAS
FMC_SDNCAS
FMC_SDNWE
FMC_D[31:0]
FMC_SDNE[1:0]
td(SDCLKL_AddR) td(SDCLKL_AddC)
th(SDCLKL_AddR)
th(SDCLKL_AddC)
td(SDCLKL_SNDE)
td(SDCLKL_Data)
th(SDCLKL_Data)
Col2 Coli Coln
Data2 Datai DatanData1
th(SDCLKL_SNDE)
td(SDCLKL_NRAS)
td(SDCLKL_NCAS) th(SDCLKL_NCAS)
th(SDCLKL_NRAS)
td(SDCLKL_NWE) th(SDCLKL_NWE)
FMC_NBL[3:0]
td(SDCLKL_NBL)
Table 87. SDRAM Write timings
Symbol Parameter Min(1) Max(1)(2) Unit
tw(SDCLK) FMC_SDCLK period 2Tfmc_ker_ck – 1 2Tfmc_ker_ck+0.5
ns
td(SDCLKL _Data)Data output valid time - 2.5
th(SDCLKL _Data) Data output hold time 0 -
td(SDCLKL_Add) Address valid time - 2
td(SDCLKL_SDNWE) SDNWE valid time - 2.5
th(SDCLKL_SDNWE) SDNWE hold time 0.5 -
td(SDCLKL_ SDNE) Chip select valid time - 2
th(SDCLKL-_SDNE) Chip select hold time 0.5 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 1.5
th(SDCLKL_SDNRAS) SDNRAS hold time 0.5 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 1.5
td(SDCLKL_SDNCAS) SDNCAS hold time 0.5 -
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 141/234
1. Guaranteed by characterization results.
2. At VOS1, these values are degraded by up to 5 %.
Table 88. LPSDR SDRAM Write timings
Symbol Parameter Min(1) Max(1)(2) Unit
tw(SDCLK) FMC_SDCLK period 2Tfmc_ker_ck – 1 2Tfmc_ker_ck+0.5
ns
td(SDCLKL _Data)Data output valid time - 2.5
th(SDCLKL _Data) Data output hold time 0 -
td(SDCLKL_Add) Address valid time - 2.5
td(SDCLKL-SDNWE) SDNWE valid time - 3
th(SDCLKL-SDNWE) SDNWE hold time 0 -
td(SDCLKL- SDNE) Chip select valid time - 3
th(SDCLKL- SDNE) Chip select hold time 0 -
td(SDCLKL-SDNRAS) SDNRAS valid time - 2
th(SDCLKL-SDNRAS) SDNRAS hold time 0 -
td(SDCLKL-SDNCAS) SDNCAS valid time - 2
td(SDCLKL-SDNCAS) SDNCAS hold time 0 -
1. Guaranteed by characterization results.
2. At VOS1, these values are degraded by up to 5 %.
6.3.19 Octo-SPI interface characteristics
Unless otherwise specified, the parameters given in Table 89. OCTOSPI characteristics in SDR mode and
Table 90. OCTOSPI characteristics in DTR mode (with DQS)/Octal and Hyperbus for the OCTOSPI interface are
derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage
summarized in Table 22. General operating conditions, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Measurement points are done at CMOS levels: 0.5VDD
I/O compensation cell activated.
HSLV activated when VDD ≤ 2.7 V
VOS level set to VOS0
Note: At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote
when applicable.
Refer to Section 6.3.16 I/O port characteristics for more details on the input/output alternate function
characteristics.
Table 89. OCTOSPI characteristics in SDR mode
Delay block bypassed.
Symbol Parameter Conditions Min(1)(2) Typ(1)(2) Max(1)(2)(3) Unit
F(CLK) OCTOSPI clock
frequency
1.62 V < VDD < 3.6 V, VOS0,
CLOAD = 15 pF - - 90
MHz
1.62 V < VDD < 3.6 V, VOS0,
CLOAD = 20 pF - - 80
2.7 V < VDD < 3.6 V, VOS0,
CLOAD = 20 pF - - 140
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 142/234
Symbol Parameter Conditions Min(1)(2) Typ(1)(2) Max(1)(2)(3) Unit
tw(CLKH) OCTOSPI clock high
and low time PRESCALER[7:0] = n = 0,1,3,5
t(CLK)/2 -t(CLK)/2+1
ns
tw(CLKL) t(CLK)/2−1 -t(CLK)/2
tw(CLKH) OCTOSPI clock high
and low time PRESCALER[7:0] = n = 2,4,6,8
(n/2)*t(CLK)/(n+1) -(n/2)*t(CLK)/(n
+1)+1
tw(CLKL) (n/2+1)*t(CLK)/(n
+1) −1 -(n/2+1)*t(CLK)/(n
+1)
ts(IN)(4) Data input setup time 1 - -
th(IN)(4) Data input hold time 6 - -
tv(OUT) Data output valid time - 1 1.5(4)
th(OUT) Data output hold time 0 - -
1. All values apply to Octal and Quad-SPI mode.
2. Guaranteed by characterization results.
3. At VOS1, these values are degraded by up to 5 %.
4. Using PC2, PC3 PI11, PF0 or PF1 I/O in the data bus adds 3.5 ns to this timing value.
Figure 49. OctoSPI timing diagram - SDR mode
Data output IO0 IO1 IO2
Clock
Data input IO0 IO1 IO2
t(CLK) tw(CLKH) tw(CLKL)
tr(CLK) tf(CLK)
ts(IN) th(IN)
tv(OUT) th(OUT)
Table 90. OCTOSPI characteristics in DTR mode (with DQS)/Octal and Hyperbus
Symbol Parameter Conditions Min(1) Typ(1) Max(1)(2) Unit
F(CLK)(3)(4) OCTOSPI clock
frequency
1.71 V < VDD < 3.6 V, VOS0,
CLOAD = 15 pF 110(5)
MHz
2.7 V < VDD < 3.6 V, VOS0,
CLOAD = 20 pF - - 100
1.62 V < VDD < 2.5 V, VOS0,
CLOAD = 20 pF - - 100/45(6)
tw(CLKH) OCTOSPI clock high
and low time PRESCALER[7:0] = n = 0,1,3,5
t(CLK)/2 -t(CLK)/2+1
ns
tw(CLKL) t(CLK)/2−1 -t(CLK)/2
tw(CLKH)
OCTOSPI clock high
and low time PRESCALER[7:0] = n = 2,4,6,8
(n/2)*t(CLK)/(n
+1) -(n/2)*t(CLK)/(n
+1)+1
tw(CLKL)
(n/
2+1)*t(CLK)/(n
+1)−1
-
(n/
2+1)*t(CLK)/(n
+1)
tv(CLK) Clock valid time - - - t(CLK)+1
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 143/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1)(2) Unit
th(CLK)
ns
Clock hold time -t(CLK)/2−0.5
t(CLK)/2 - -
tw(CS) Chip select high time - 3 x t(CLK) - -
tv(DQ) Data input vallid time - 0 - -
tv(DS) Data strobe input
valid time - 0 - -
th(DS) Data strobe input hold
time - 0 - -
tv(RWDS) Data strobe output
valid time - - - 3 x t(CLK)
tsr(DQ)
tsf(DQ)(7) Data input setup time - −1 - -
thr(DQ) Data input hold time Rising edge 3 - -
thf(DQ)(7) Falling edge 3.5 - -
tvr(OUT)
tvf(OUT) Data output valid time
DHQC = 0 - 5.5 7(8)
DHQC = 1, PRESCALER[7:0]=1,2... t(CLK)/4+
1t(CLK)/4+2(8)
thr(OUT)
thf(OUT) Data output hold time DHQC = 0 4.5 - -
DHQC = 1, PRESCALER[7:0]=1,2... t(CLK)/4 - -
1. Guaranteed by characterization results, unless otherwise specified.
2. At VOS1, these values are degraded by up to 5 %.
3. The maximum frequency values are given for a maximum RWDS to DQ skew ≤ ±1.0 ns.
4. DHQC must be set to reach the mentioned frequency.
5. Guaranteed by design.
6. Using PC2, PC3, PI11, PF0 or PF1 I/Os limits the maximum clock frequency.
7. Delay block bypassed.
8. Using PC2, PC3, PI11, PF0 or PF1 I/O in the data bus adds 3.5 ns to this timing value.
Figure 50. OctoSPI timing diagram - DTR mode
Data output IO0 IO2 IO4
Clock
Data input IO0 IO2 IO4
t(CLK) tw(CLKH) tw(CLKL)
tr(CLK) tf(CLK)
tsf(IN) thf(IN)
tvf(OUT) thr(OUT)
IO1 IO3 IO5
IO1 IO3 IO5
tvr(OUT) thf(OUT)
tsr(IN) thr(IN)
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 144/234
Figure 51. OctoSPI Hyperbus clock
CLK
t(CLK#) tw(CLK#L) tw(CLK#H)
tf(CLK#) tr(CLK#)
tr(CLK) tw(CLKH) tw(CLKL)
t(CLK) tf(CLK)
CLK#
VOD(CLK)
Figure 52. OctoSPI Hyperbus read
CS#
t
ACC
= Initial Access
Latency Count
Command-Address
47:40 39:32 31:24 23:16 15:8 7:0 Dn
A
Dn
B
Dn+1
A
Dn+1
B
Host drives DQ[7:0] and Memory drives RWDS
CLK,
CLK#
RWDS
DQ[7:0]
Memory drives DQ[7:0] and RWDS
tw(CS)
tv(RWDS)
tv(CLK)
tv(DS)
tv(DQ)
th(CLK)
th(DS)
tv(OUT) th(OUT) th(DQ)
ts(DQ)
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 145/234
Figure 53. OctoSPI Hyperbus write
CS#
Access Latency
Latency Count
Command-Address
47:40 39:32 31:24 23:16 15:8 7:0 Dn
A
Dn
B
Dn+1
A
Dn+1
B
Host drives DQ[7:0] and Memory drives RWDS
Host drives DQ[7:0] and RWDS
CLK,
CLK#
RWDS
DQ[7:0]
tw(CS)
tv(RWDS)
tv(CLK) th(CLK)
High = 2x Latency Count
Low = 1x Latency Count
Read Write Recovery
th(OUT)
tv(OUT) th(OUT)
tv(OUT)
th(OUT)
tv(OUT)
6.3.20 Delay block (DLYB) characteristics
Unless otherwise specified, the parameters given in Table 91. Delay Block characteristics for Delay Block are
derived from tests performed under the ambient temperature, frcc_cpu_ck frequency and VDD supply voltage
summarized in Table 22. General operating conditions, with the following configuration:
Table 91. Delay Block characteristics
Symbol Parameter Conditions Min Typ Max Unit
tinit Initial delay - 1400 1700 2700 ps
tUnit Delay - 40 47 59
6.3.21 16-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 92. ADC characteristics are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in
Table 22. General operating conditions.
Table 92. ADC characteristics
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
VDDA Analog power supply
for ADC ON - 1.62 - 3.6
V
VREF+(2) Positive reference
voltage
VDDA ≥ 2 V 1.62 - VDDA
VDDA < 2 V VDDA
VREF-(2) Negative reference
voltage -VSSA
fADC ADC clock frequency 1,62 V ≤VDDA ≤ 3.6 V
BOOST =
11 0.12 - 50
MHz
BOOST =
10 0.12 - 25
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 146/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
fADC ADC clock frequency 1,62 V ≤VDDA ≤ 3.6 V
BOOST =
01 MHz
0.12 - 12.5
BOOST =
00 - - 6.25
fS(3)
Sampling rate for
Direct channels
Resolution = 16
bits,
VDDA > 2.5 V TJ =
90 °C
fADC = 36 MHz SMP = 1.5 - - 3.60
MSPS
Resolution = 16
bits fADC = 37 MHz SMP = 2.5 - - 3.35
Resolution = 14
bits
TJ =
125 °C
fADC = 50 MHz SMP = 2.5 - - 5.00
Resolution = 12
bits fADC=50 MHz SMP = 2.5 - - 5.50
Resolution = 10
bits fADC=50 MHz SMP=1.5 - - 7.10
Resolution = 8
bits fADC=50 MHz SMP=1.5 - - 8.30
Sampling rate for Fast
channels
Resolution = 16
bits, VDDA>2.5V TJ = 90 °C
fADC=32 MHz SMP=2.5 - - 2.90
Resolution = 16
bits fADC=31 MHz SMP=2.5 - - 2.80
Resolution = 14
bits
TJ =
125°C
fADC=33 MHz SMP=2.5 - - 3.30
Resolution = 12
bits fADC=39 MHz SMP=2.5 - - 4.30
Resolution = 10
bits fADC=48 MHz SMP=2.5 - - 6.00
Resolution = 8
bits fADC=50 MHz SMP=2.5 - - 7.10
Sampling rate for Slow
channels,
BOOST = 00, fADC =
10 MHz
Resolution = 16
bits TJ = 90 °C
fADC=10 MHz SMP=1.5
- -
1.00
Resolution = 14
bits
TJ =
125 °C
- -
Resolution = 12
bits - -
Resolution = 10
bits - -
Resolution = 8
bits - -
tTRIG External trigger period Resolution = 16 bits - - 10 1/fADC
VAIN(4) Conversion voltage
range - 0 - VREF+ V
VCMIV Common mode input
voltage -VREF/2
− 10%
VREF/
2
VREF/2
+ 10% V
RAIN(5) External input
impedance
Resolution = 16 bits, TJ = 125 °C - - 170
Ω
Resolution = 14 bits, TJ= 125 °C - - 435
Resolution = 12 bits, TJJ = 125 °C - - 1150
Resolution = 10 bits, TJ = 125 °C - - 5650
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 147/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
RAIN(5) External input
impedance Resolution = 8 bits, TJ = 125 °C Ω
- - 26500
CADC Internal sample and
hold capacitor - - 4 - pF
tADCVREG_
STUP ADC LDO startup time - - 5 10 µs
tSTAB ADC power-up time LDO already started 1 - - conversion
cycle
tCAL Offset and linearity
calibration time - 165010
1/fADC
tOFF_CAL Offset calibration time - 1280
tLATR
Trigger conversion
latency for regular and
injected channels
without aborting the
conversion
CKMODE = 00 1.5 2 2.5
CKMODE = 01 - - 2.5
CKMODE = 10 - - 2.5
CKMODE = 11 - - 2.25
tLATRINJ
Trigger conversion
latency for regular and
injected channels
when a regular
conversion is aborted
CKMODE = 00 2.5 3 3.5
CKMODE = 01 - - 3.5
CKMODE = 10 - - 3.5
CKMODE = 11 - - 3.25
tSSampling time - 1.5 - 810.5
tCONV
Total conversion time
(including sampling
time)
N-bits resolution
tS +
0.5 +
N/2
- -
IDDA_D(ADC)
ADC consumption on
VDDA, BOOST=11,
Differential mode
Resolution = 16 bits, fADC=25 MHz - 1440 -
µA
Resolution = 14 bits, fADC=30 MHz - 1350 -
Resolution = 12 bits, fADC=40 MHz - 990 -
ADC consumption on
VDDA, BOOST=10,
Differential mode
fADC=25 MHz
Resolution = 16 bits - 1080 -
Resolution = 14 bits - 810 -
Resolution = 12 bits - 585 -
ADC consumption on
VDDA, BOOST=01,
Differential mode
fADC=12.5 MHz
Resolution = 16 bits - 630 -
Resolution = 14 bits - 432 -
Resolution = 12 bits - 315 -
ADC consumption on
VDDA, BOOST=00,
Differential mode
fADC=6.25 MHz
Resolution = 16 bits - 360 -
Resolution = 14 bits - 270 -
Resolution = 12 bits - 225 -
IDDA_SE(ADC)
ADC consumption on
VDDA, BOOST=11,
Single-ended mode
Resolution = 16 bits, fADC=25 MHz - 720 -
µA
Resolution = 14 bits, fADC=30 MHz - 675 -
Resolution = 12 bits, fADC=40 MHz - 495 -
ADC consumption on
VDDA, BOOST=10,
Single-ended mode
fADC=25 MHz
Resolution = 16 bits - 540 -
Resolution = 14 bits - 405 -
Resolution = 12 bits - 292.5 -
ADC consumption on
VDDA, BOOST=01,
Single-ended mode
Resolution = 16 bits - 315 -
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 148/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
IDDA_SE(ADC)
fADC=12.5 MHz Resolution = 14 bits
µA
- 216 -
Resolution = 12 bits - 157.5 -
ADC consumption on
VDDA, BOOST=00,
Single-ended mode
fADC=6.25 MHz
Resolution = 16 bits - 180 -
Resolution = 14 bits - 135 -
Resolution = 12 bits - 112.5 -
IDD(ADC) ADC consumption on
VDD
fADC=50 MHz - 400 -
fADC=25 MHz - 220 -
fADC=12.5 MHz - 180 -
fADC=6.25 MHz - 120 -
fADC=3.125 MHz - 80 -
1. Guaranteed by design.
2. Depending on the package, VREF+ can be internally connected to VDDA and VREF- to VSSA.
3. These values are valid UFBGA176+25 and one ADC. The values for other packages and multiple ADCs
might be different
4. The voltage booster on ADC switches must be used for VDDA < 2.4 V (embedded I/O switches).
5. The tolerance is 10 LSBs for 16-bit resolution, 4 LSBs for 14-bit resolution, and 2 LSBs for 12-bit, 10-bit and
8-bit resolutions.
Table 93. Minimum sampling time vs RAIN
Data valid up to 130 °C, with a 47 pF PCB capacitor and VDDA=1.6 V.
Resolution RAIN (Ω)
Minimum sampling time (s)
Direct channels(1)(2) Fast channels(1)(3) Slow channels(1)(4)
16 bits 47 7.37E-08 1.14E-07 1.72E-07
14 bits
47 6.29E-08 9.74E-08 1.55E-07
68 6.84E-08 1.02E-07 1.58E-07
100 7.80E-08 1.12E-07 1.62E-07
150 9.86E-08 1.32E-07 1.80E-07
220 1.32E-07 1.61E-07 2.01E-07
12 bits
47 5.32E-08 8.00E-08 1.29E-07
68 5.74E-08 8.50E-08 1.32E-07
100 6.58E-08 9.31E-08 1.40E-07
150 8.37E-08 1.10E-07 1.51E-07
220 1.11E-07 1.34E-07 1.73E-07
330 1.56E-07 1.78E-07 2.14E-07
470 2.16E-07 2.39E-07 2.68E-07
680 3.01E-07 3.29E-07 3.54E-07
10 bits
47 4.34E-08 6.51E-08 1.08E-07
68 4.68E-08 6.89E-08 1.11E-07
100 5.35E-08 7.55E-08 1.16E-07
150 6.68E-08 8.77E-08 1.26E-07
220 8.80E-08 1.08E-07 1.40E-07
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 149/234
Resolution RAIN (Ω)
Minimum sampling time (s)
Direct channels(1)(2) Fast channels(1)(3) Slow channels(1)(4)
10 bits
330 1.24E-07 1.43E-07 1.71E-07
470 1.69E-07 1.89E-07 2.13E-07
680 2.38E-07 2.60E-07 2.80E-07
1000 3.45E-07 3.66E-07 3.84E-07
1500 5.15E-07 5.35E-07 5.48E-07
2200 7.42E-07 7.75E-07 7.78E-07
3300 1.10E-06 1.14E-06 1.14E-06
8 bits
47 3.32E-08 5.10E-08 8.61E-08
68 3.59E-08 5.35E-08 8.83E-08
100 4.10E-08 5.83E-08 9.22E-08
150 5.06E-08 6.76E-08 9.95E-08
220 6.61E-08 8.22E-08 1.11E-07
330 9.17E-08 1.08E-07 1.32E-07
470 1.24E-07 1.40E-07 1.63E-07
680 1.74E-07 1.91E-07 2.12E-07
1000 2.53E-07 2.70E-07 2.85E-07
1500 3.73E-07 3.93E-07 4.05E-07
2200 5.39E-07 5.67E-07 5.75E-07
3300 8.02E-07 8.36E-07 8.38E-07
4700 1.13E-06 1.18E-06 1.18E-06
6800 1.62E-06 1.69E-06 1.68E-06
10000 2.36E-06 2.47E-06 2.45E-06
15000 3.50E-06 3.69E-06 3.65E-06
1. Guaranteed by design.
2. Direct channels are connected to analog I/Os (PA0_C, PA1_C, PC2_C and PC3_C) to optimize ADC
performance.
3. Fast channels correspond for ADCx_INPx to PA6, PB1, PC4, PF11, PF13 and for ADCx_INNx to PA7, PB0,
PC5, PF12, PF14
4. Slow channels correspond to all ADC inputs except for the Direct and Fast channels.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 150/234
Figure 54. ADC conversion timing diagram
CLK
1. The sampling time defines the minimum sampling clock cycles (SMP) to be programmed in the ADC (refer to the product reference manual for details).
Sampling(1) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mux
Number of CLK clock cycles = ADC resolution / 2
Total conversion time: 0.5 +Tsamp + N/2
SMP1/2
Table 94. ADC accuracy
Data guaranteed by characterization for BGA packages. The values for LQFP packages might differ. ADC DC accuracy values are measured
after internal calibration.
Symbol Parameter Conditions(1) Min Typ Max Unit
ET Total undadjusted error
Direct channel Single ended - +10/–20 -
LSB
Differential - ±15 -
Fast channel Single ended - +10/–20 -
Differential - ±15 -
Slow channel Single ended - ±10 -
Differential ±10 -
EO Offset error - - ±10 -
EG Gain error - - ±15 -
ED Differential linearity error Single ended - +3/–1 -
Differential - +4.5/–1 -
EL Integral linearity error
Direct channel Single ended - ±11 -
Differential - ±7 -
Fast channel Single ended - ±13 -
Differential - ±7 -
Slow channel Single ended - ±10 -
Differential - ±6 -
ENOB Effective number of bits Single ended - 12.2 - Bits
Differential - 13.2 -
SINAD Signal-to-noise and distortion ratio Single ended - 75.2 -
dB
Differential - 81.2 -
SNR Signal-to-noise ratio Single ended - 77.0 -
Differential - 81.0 -
THD Total harmonic distortion Single ended - 87 -
Differential - 90 -
1. ADC clock frequency = 25 MHz, ADC resolution = 16 bits, VDDA=VREF+=3.3 V and BOOST=11.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 151/234
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be
avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It
is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative
currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.15 I/O current
injection characteristics does not affect the ADC accuracy.
Figure 55. ADC accuracy characteristics (12-bit resolution)
EO
EG
1L S B IDEAL
4095
4094
4093
5
4
3
2
1
0
7
6
1 2 3 456 7 4093 4094 4095 4096
(1 )
(2 )
ET
ED
EL
(3)
VDDA
VSS A
VREF+
4096 (or depending on package)]
VDDA
4096
[1LSB IDEAL =
1. Example of an actual transfer curve.
2. Ideal transfer curve.
3. End point correlation line.
4. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
5. EO = Offset Error: deviation between the first actual transition and the first ideal one.
6. EG = Gain Error: deviation between the last ideal transition and the last actual one.
7. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
8. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation
line.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 152/234
Figure 56. Typical connection diagram using the ADC
STM32
VDD
AINx
IL±1 µA
0.6 V
VT
RAIN (1)
Cparasitic
VAIN
0.6 V
VT
RADC (1)
CADC (1)
12-bit
converter
Sample and hold ADC
converter
1. Refer to Table 92. ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 57. Power supply and reference decoupling
(VREF+ not connected to VDDA) or Figure 58. Power supply and reference decoupling (VREF+ connected to VDDA),
depending on whether VREF+ is connected to VDDA or not. The 100 nF capacitors should be ceramic (good
quality). They should be placed them as close as possible to the chip.
Figure 57. Power supply and reference decoupling (VREF+ not connected to VDDA)
1 µF // 100 nF
1 µF // 100 nF
STM32
VREF+(1)
VSSA/VREF-(1)
VDDA
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 153/234
1. VREF+ input is not available on all package (refer to Table 1. STM32H7B3xI features and peripheral counts)
whereas VREF– is available only on UFBGA176+25, TFBGA225 with SMPS and TFBGA216. When VREF- is
not available, it is internally connected to VSSA.
Figure 58. Power supply and reference decoupling (VREF+ connected to VDDA)
1 µF // 100 nF
STM32
VREF+/VDDA(1)
VREF-/VSSA(1)
1. VREF+ input is not available on all package (refer to Table 1. STM32H7B3xI features and peripheral counts)
whereas VREF– is available only on UFBGA176+25, TFBGA225 with SMPS and TFBGA216. When VREF- is
not available, it is internally connected to VSSA.
6.3.22 DAC characteristics
Table 95. DAC characteristics
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
VDDA Analog supply voltage - 1.8 3.3 3.6
V
VREF+ Positive reference voltage - 1.80 - VDDA
VREF- Negative reference voltage - - VSSA -
RLResistive Load DAC output buffer ON
connected to VSSA 5 - -
kΩ
connected to VDDA 25 - -
ROOutput Impedance DAC output buffer OFF 10.3 13 16
RBON Output impedance sample and hold
mode, output buffer ON DAC output buffer ON
VDD = 2.7 V - - 1.6 kΩ
VDD = 2.0 V - - 2.6
RBOFF Output impedance sample and hold
mode, output buffer OFF DAC output buffer OFF
VDD = 2.7 V - - 17.8 kΩ
VDD = 2.0 V - - 18.7
CLCapacitive Load DAC output buffer OFF - - 50 pF
CSH Sample and Hold mode - 0.1 1 µF
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 154/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
VDAC_OUT Voltage on DAC_OUT output DAC output buffer ON 0.2 - VDDA
−0.2 V
DAC output buffer OFF 0 - VREF+
tSETTLING
Settling time (full scale: for a 12-bit
code transition between the lowest and
the highest input codes when
DAC_OUT reaches the final value of
±0.5LSB, ±1LSB, ±2LSB, ±4LSB,
±8LSB)
Normal mode, DAC
output buffer ON,
CL ≤ 50 pF, RL ≥ 5 kΩ
±0.5 LSB - 2.05 -
µs
±1 LSB - 1.97 -
±2 LSB - 1.67 -
±4 LSB - 1.66 -
±8 LSB - 1.65 -
Normal mode, DAC output buffer OFF, ±1LSB
CL=10 pF - 1.7 2
tWAKEUP(2) Wakeup time from off state (setting the
ENx bit in the DAC Control register)
until the final value of ±1LSB is reached
Normal mode, DAC output buffer ON, CL ≤ 50 pF,
RL = 5 kΩ - 5 7.5
µs
Normal mode, DAC output buffer OFF,
CL ≤ 10 pF 2 5
PSRR DC VDDA supply rejection ratio Normal mode, DAC output buffer ON, CL ≤ 50 pF,
RL = 5 kΩ - −80 −28 dB
tSAMP
Sampling time in Sample and Hold
mode
CL=100 nF
(code transition between the lowest
input code and the highest input code
when DAC_OUT reaches the ±1LSB
final value)
MODE<2:0>_V12=100/101
(BUFFER ON) - 0.7 2.6
ms
MODE<2:0>_V12=110
(BUFFER OFF) - 11.5 18.7
MODE<2:0>_V12=111
(INTERNAL BUFFER OFF) - 0.3 0.6 µs
Ileak Output leakage current - - - (3) nA
CIint Internal sample and hold capacitor - 1.8 2.2 2.6 pF
tTRIM Middle code offset trim time Minimum time to verify the each code 50 - - µs
Voffset Middle code offset for 1 trim code step
VREF+ = 3.6 V - 850 - µV
VREF+ = 1.8 V - 425 -
IDDA(DAC)
DAC quiescent
consumption from VDDA
DAC output buffer ON
No load, middle code
(0x800) - 360 -
µA
No load, worst code
(0xF1C) - 490 -
DAC output buffer OFF No load, middle/worst
code (0x800) - 20 -
Sample and Hold mode, CSH=100 nF -
360*TON/
(TON+TOFF)
(4)
-
IDDV(DAC) DAC consumption from VREF+
DAC output buffer ON
No load, middle code
(0x800) - 170 -
No load, worst code
(0xF1C) - 170 -
DAC output buffer OFF No load, middle/worst
code (0x800) - 160 -
Sample and Hold mode, Buffer ON, CSH=100 nF
(worst code) -
170*TON/
(TON+TOFF)
(4)
-
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 155/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
IDDV(DAC) DAC consumption from VREF+ Sample and Hold mode, Buffer OFF, CSH=100 nF
(worst code) µA
-
160*TON/
(TON+TOFF)
(4)
-
1. Guaranteed by design, unless otherwise specified.
2. In buffered mode, the output can overshoot above the final value for low input code (starting from the
minimum value).
3. Refer to Table 65. I/O static characteristics.
4. TON is the refresh phase duration, while TOFF is the hold phase duration. Refer to the product reference
manual for more details.
Table 96. DAC accuracy
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
DNL Differential non linearity(2) DAC output buffer ON −2 - 2 LSB
DAC output buffer OFF −2 - 2
INL Integral non linearity(3)
DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ −4 - 4 LSB
DAC output buffer OFF, CL ≤ 50 pF, no RL−4 - 4
Offset Offset error at code 0x800(3)
DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ VREF+ = 3.6 V - - ±12 LSB
VREF+ = 1.8 V - - ±25
DAC output buffer OFF, CL ≤ 50 pF, no RL- - - ±8
Offset1 Offset error at code 0x001(4) DAC output buffer OFF, CL ≤ 50 pF, no RL- - ±5 LSB
OffsetCal Offset error at code 0x800 after
factory calibration DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ VREF+ = 3.6 V - - ±5 LSB
VREF+ = 1.8 V - - ±7
Gain Gain error(5)
DAC output buffer ON,CL ≤ 50 pF, RL ≥ 5 kΩ - - ±1 %
DAC output buffer OFF, CL ≤ 50 pF, no RL- - ±1
TUE Total undajusted error
DAC output buffer ON,CL ≤ 50 pF, RL ≥ 5 kΩ - - ±30
DAC output buffer OFF, CL ≤ 50 pF, no RL- - ±12
TUECal Total undajusted error after
calibration DAC output buffer ON CL ≤ 50pF, RL ≥ 5kΩ - - ±23 LSB
SNR Signal-to-noise ratio(6)
DAC output buffer ON CL ≤ 50pF, RL ≥ 5kΩ 1 kHz, BW 500KHz - 67.8 - dB
DAC output buffer OFF CL ≤ 50pF, no RL 1kHz, BW 500KHz - 67.8 -
THD Total harmonic distorsion(6)
DAC output buffer ON CL ≤ 50pF, RL ≥ 5kΩ, 1 kHz - −78,6 - dB
DAC output buffer OFF CL ≤ 50pF, no RL, 1 kHz - −78,6 -
SINAD Signal-to-noise and distorsion ratio(6)
DAC output buffer ON CL ≤ 50pF, RL ≥ 5kΩ, 1 kHz - 67.5 - dB
DAC output buffer OFF CL ≤ 50pF, no RL, 1 kHz - 67.5 -
ENOB Effective number of bits
DAC output buffer ON CL ≤ 50pF, RL ≥ 5kΩ, 1 kHz - 10.9 - dB
DAC output buffer OFF CL ≤ 50pF, no RL, 1 kHz - 10.9 -
1. Guaranteed by design, unless otherwise specified.
2. Difference between two consecutive codes minus 1 LSB.
3. Difference between the value measured at Code i and the value measured at Code i on a line drawn
between Code 0 and last Code 4095.
4. Difference between the value measured at Code (0x001) and the ideal value.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 156/234
5. Difference between the ideal slope of the transfer function and the measured slope computed from code
0x000 and 0xFFF when the buffer is OFF, and from code giving 0.2 V and (VREF+ − 0.2 V) when the buffer
is ON.
6. Signal is −0.5dBFS with Fsampling = 1 MHz.
Figure 59. 12-bit buffered /non-buffered DAC
RL
CL
Buffered/Non-buffered DAC
DAC_OUTx
Buffer(1)
12-bit
digital to
analog
converter
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring
the BOFFx bit in the DAC_CR register.
6.3.23 Voltage reference buffer characteristics
Table 97. VREFBUF characteristics
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
VDDA Analog supply voltage
Normal mode
VSCALE = 000 2.8 3.3 3.6
V
VSCALE = 001 2.4 - 3.6
VSCALE = 010 2.1 - 3.6
VSCALE = 011 1.8 - 3.6
Degraded mode(2)
VSCALE = 000 1.62 - 2.80
VSCALE = 001 1.62 - 2.40
VSCALE = 010 1.62 - 2.10
VSCALE = 011 1.62 - 1.80
VREFBUF_OUT Voltage Reference Buffer
Output
Normal mode at 30°C,
ILOAD=100 µA
VSCALE = 000 2.496(3) 2.5000 2.504(3)
VSCALE = 001 2,0460 2.0490 2,0520
VSCALE = 010 1,8010 1.8040 1,8060
VSCALE = 011 1,4995 1.5015 1,5040
Degraded mode(2)
VSCALE = 000 VDDA− 150
mV - VDDA
VSCALE = 001 VDDA− 150
mV - VDDA
VSCALE = 010 VDDA− 150
mV - VDDA
VSCALE = 011 VDDA− 150
mV - VDDA
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 157/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
TRIM Trim step resolution - - - ±0.05 ±0.1 %
CLLoad capacitor - - 0.5 1 1.50 uF
esr Equivalent Serial Resistor of
CL- - - - 2
ILOAD Static load current - - - - 4 mA
Iline_reg Line regulation 2.8 V ≤ VDDA ≤ 3.6 V ILOAD = 500 µA - 200 - ppm/V
ILOAD = 4 mA - 100 -
ILOAD_reg Load regulation 500 µA ≤ ILOAD ≤ 4 mA Normal Mode - 50 - ppm/ mA
Tcoeff Temperature coefficient −40 °C < TJ < +130 °C - - -
Tcoeff
VREFINT +
100
ppm/ °C
PSRR Power supply rejection DC - - 60 - dB
100KHz - - 40 -
tSTART Startup time
CL=0.5 µF - - 300 -
µs
CL=1 µF - - 500 -
CL=1.5 µF - - 650 -
IINRUSH
Control of maximum DC
current drive on
VREFBUF_OUT during startup
phase(4)
- - 8 - mA
IDDA(VREFBUF) VREFBUF consumption from
VDDA
ILOAD = 0 µA - - 15 25
µA
ILOAD = 500 µA - - 16 30
ILOAD = 4 mA - - 32 50
1. Guaranteed by design, unless otherwise specified.
2. In degraded mode, the voltage reference buffer cannot accurately maintain the output voltage (VDDA−drop
voltage).
3. Guaranteed by tests in production.
4. To properly control VREFBUF IINRUSH current during the startup phase and the change of scaling, VDDA
voltage should be in the range of 1.8 V-3.6 V, 2.1 V-3.6 V, 2.4 V-3.6 V and 2.8 V-3.6 V for VSCALE = 011,
010, 001 and 000, respectively.
6.3.24 Analog temperature sensor characteristics
Table 98. Analog temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature (from VSENSOR voltage) - - 3 °C
VSENSE linearity with temperature (from ADC counter) - - 3
Avg_Slope(2) Average slope (from VSENSOR voltage) - 2 - mV/°C
Average slope (from ADC counter) - 2 -
V30(3) Voltage at 30°C ± 5 °C - 0.62 - V
tstart_run(1) Startup time in Run mode (buffer startup) - - 25.2 µs
tS_temp(1) ADC sampling time when reading the temperature 9 - -
Isens(1) Sensor consumption - 0.18 0.31 µA
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 158/234
Symbol Parameter Min Typ Max Unit
Isensbuf(1) µA
Sensor buffer consumption - 3.8 6.5
1. Guaranteed by design.
2. Guaranteed by characterization results.
3. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte.
Table 99. Analog temperature sensor calibration values
Symbol Parameter Memory address
TS_CAL1 Temperature sensor raw data acquired value at 30 °C, VDDA=3.3 V 0x08FF F814 - 0x08FF F816
TS_CAL2 Temperature sensor raw data acquired value at 110 °C, VDDA=3.3 V 0x08FF F818 - 0x08FF F81A
6.3.25 Digital temperature sensor characteristics
Table 100. Digital temperature sensor characteristics
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
fDTS(2) Output Clock frequency 500 750 1150 kHz
TLC(2) Temperature linearity coefficient VOS2 1660 2100 2750 Hz/°C
TTOTAL_ERROR(2) Temperature offset measurement, all VOS
TJ =−40 °C to 30 °C −13 4 °C
TJ =30 °C to 130 °C −7 2
TVDD_CORE Additional error due to supply variation VOS2 0 0 °C
VOS0, VOS1, VOS3 −1 1
tTRIM Calibration time - 2 ms
tWAKE_UP Wake-up time from off state until DTS ready bit is set 67 116.00 μs
IDDCORE_DTS DTS consumption on VCORE 8.5 30 70.0 μA
1. Guaranteed by design, unless otherwise specified.
2. Guaranteed by characterization results.
6.3.26 Temperature and VBAT monitoring
Table 101. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
RResistor bridge for VBAT - 26 - KΩ
QRatio on VBAT measurement - 4 - -
Er(1) Error on Q –10 - +10 %
tS_vbat(1) ADC sampling time when reading VBAT input 9 - - µs
VBAThigh High supply monitoring - 3.55 - V
VBATlow Low supply monitoring - 1.36 -
1. Guaranteed by design.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 159/234
Table 102. VBAT charging characteristics
Symbol Parameter Condition Min Typ Max Unit
RBC Battery charging resistor VBRS in PWR_CR3= 0 - 5 - KΩ
VBRS in PWR_CR3= 1 1.5 -
Table 103. Temperature monitoring characteristics
Symbol Parameter Min(1) Typ(1) Max(1) Unit
TEMPhigh High temperature monitoring - 117 - °C
TEMPlow Low temperature monitoring - 25 -
1. Guaranteed by design.
6.3.27 Voltage booster for analog switch
Table 104. Voltage booster for analog switch characteristics
Symbol Parameter Condition Min(1) Typ(1) Max(1) Unit
VDD Supply voltage - 1.62 2.6 3.6 V
tSU(BOOST) Booster startup time - - - 50 µs
IDD(BOOST) Booster consumption
1.62 V ≤ VDD ≤ 2.7 V - - 125 µA
2.7 V < VDD < 3.6 V - - 250
1. Guaranteed by characterization results.
6.3.28 Comparator characteristics
Table 105. COMP characteristics
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
VDDA Analog supply voltage - 1.62 3.3 3.6
V
VIN Comparator input voltage range - 0 - VDDA
VBG(2) Scaler input voltage - -
VSC Scaler offset voltage - - ±5 ±10 mV
IDDA(SCALER) Scaler static consumption from VDDA
BRG_EN=0 (bridge disable) - 0.2 0.3 µA
BRG_EN=1 (bridge enable) - 0.8 1
tSTART_SCALER Scaler startup time - - 140 250 µs
tSTART Comparator startup time to reach propagation
delay specification
High-speed mode - 2 5
µsMedium mode - 5 20
Ultra-low-power mode - 15 80
tD(3)
Propagation delay for 200 mV step with
100 mV overdrive
High-speed mode - 50 80 ns
Medium mode - 0.5 0.9 µs
Ultra-low-power mode - 2.5 7
Propagation delay for step > 200 mV with
100 mV overdrive only on positive inputs
High-speed mode - 50 120 ns
Medium mode - 0.5 1.2 µs
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 160/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
tD(3) Propagation delay for step > 200 mV with
100 mV overdrive only on positive inputs Ultra-low-power mode µs
- 2.5 7
Voffset Comparator offset error Full common mode range - ±5 ±20 mV
Vhys Comparator hysteresis
No hysteresis - 0 -
mV
Low hysteresis 4 10 22
Medium hysteresis 8 20 37
High hysteresis 16 30 52
IDDA(COMP) Comparator consumption from VDDA
Ultra-low-power mode
Static - 400 600
nA
With 50 kHz ±100 mV
overdrive square signal - 800 -
Medium mode
Static - 5 7
µA
With 50 kHz ±100 mV
overdrive square signal - 6 -
High-speed mode
Static - 70 100
With 50 kHz ±100 mV
overdrive square signal - 75 -
1. Guaranteed by design, unless otherwise specified.
2. Refer to Section 6.3.6 Embedded reference voltage.
3. Guaranteed by characterization results.
6.3.29 Operational amplifier characteristics
Table 106. Operational amplifier characteristics
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
VDDA Analog supply voltage Range - 2 3.3 3.6 V
CMIR Common Mode Input Range - 0 - VDDA
VIOFFSET Input offset voltage 25°C, no load on output - - ±1.5 mV
All voltages and temperature, no load - - ±2.5
ΔVIOFFSET Input offset voltage drift - - ±3.0 - μV/°C
TRIMOFFSETP,
TRIMLPOFFSETP
Offset trim step at low
common input voltage
(0.1*VDDA)- - 1.1 1.5
mV
TRIMOFFSETN,
TRIMLPOFFSETN
Offset trim step at high
common input voltage
(0.9*VDDA)- - 1.1 1.5
ILOAD Drive current - - - 500 μA
ILOAD_PGA Drive current in PGA mode - - - 270
CLOAD Capacitive load - - - 50 pF
CMRR Common mode rejection ratio - - 80 - dB
PSRR Power supply rejection ratio CLOAD ≤ 50pf / RLOAD ≥ 4 kΩ(2) at 1 kHz,
Vcom=VDDA/2 50 66 - dB
GBW Gain bandwidth for high
supply range
200 mV ≤ Output dynamic range ≤ VDDA -
200 mV 4 7.3 12.3 MHz
SR Slew rate (from 10% and 90%
of output voltage) Normal mode - 3 - V/µs
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 161/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
SR Slew rate (from 10% and 90%
of output voltage) High-speed mode V/µs
- 24 -
AO Open loop gain 200 mV ≤ Output dynamic range ≤ VDDA -
200 mV 59 90 129 dB
φm Phase margin - - 55 - °
GM Gain margin - - 12 - dB
VOHSAT High saturation voltage Iload=max or RLOAD=min,
Input at VDDA
VDDA
−100 mV - - mV
VOLSAT Low saturation voltage Iload=max or RLOAD=min, Input at 0 V - - 100
tWAKEUP Wake up time from OFF state
Normal mode
CLOAD ≤ 50pf, RLOAD
4 kΩ, follower
configuration
- 0.8 3.2
µs
High speed
mode
CLOAD ≤ 50pf, RLOAD
4 kΩ, follower
configuration
- 0.9 2.8
PGA gain
Non inverting gain error value
PGA gain = 2 −1 - 1
%
PGA gain = 4 −2 - 2
PGA gain = 8 −2.5 - 2.5
PGA gain = 16 −3 - 3
Inverting gain error value
PGA gain = 2 −1 - 1
PGA gain = 4 −1 - 1
PGA gain = 8 −2 - 2
PGA gain = 16 −3 - 3
External non-inverting gain
error value
PGA gain = 2 −1 - 1
PGA gain = 4 −3 - 3
PGA gain = 8 −3.5 - 3.5
PGA gain = 16 −4 - 4
Rnetwork
R2/R1 internal resistance
values in non-inverting PGA
mode(3)
PGA Gain=2 - 10/10 -
kΩ/
PGA Gain=4 - 30/10 -
PGA Gain=8 - 70/10 -
PGA Gain=16 - 150/10 -
R2/R1 internal resistance
values in inverting PGA
mode(3)
PGA Gain = -1 - 10/10 -
PGA Gain = -3 - 30/10 -
PGA Gain = -7 - 70/10 -
PGA Gain = -15 - 150/10 -
Delta R Resistance variation (R1 or
R2) - −15 - 15 %
PGA BW
PGA bandwidth for different
non inverting gain
Gain=2 - GBW/2 -
MHz
Gain=4 - GBW/4 -
Gain=8 - GBW/8 -
Gain=16 - GBW/16 -
PGA bandwidth for different
inverting gain
Gain = -1 - 5.00 -
MHz
Gain = -3 - 3.00 -
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 162/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1) Unit
PGA BW PGA bandwidth for different
inverting gain
Gain = -7 MHz
- 1.50 -
Gain = -15 - 0.80 -
en Voltage noise density at 1 KHz output loaded with 4 kΩ - 140 - nV/√Hz
at 10 KHz - 55 -
IDDA(OPAMP) OPAMP consumption from
VDDA
Normal mode no Load, quiescent
mode, follower
- 570 1000
µA
High-speed
mode - 610 1200
1. Guaranteed by design, unless otherwise specified.
2. RLOAD is the resistive load connected to VSSA or to VDDA.
3. R2 is the internal resistance between the OPAMP output and th OPAMP inverting input. R1 is the internal
resistance between the OPAMP inverting input and ground. PGA gain = 1 + R2/R1.
6.3.30 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics
Unless otherwise specified, the parameters given in Table 107. DFSDM measured timing 1.62-3.6 V for DFSDM
are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 22. General operating conditions and Table 23. Maximum allowed clock frequencies.
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load CL = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
VOS level set to VOS0
Refer to Section 6.3.16 I/O port characteristics for more details on the input/output alternate function
characteristics (DìFSDM_CKINx, DFSDM_DATINx, DFSDM_CKOUT for DFSDM).
Table 107. DFSDM measured timing 1.62-3.6 V
Symbol Parameter Conditions Min Typ Max Unit
fDFSDMCLK DFSDM
clock 1.62 V < VDD < 3.6 V - - fSYSCLK
MHz
fCKIN (1/
TCKIN)
Input clock
frequency
SPI mode (SITP[1:0]=0,1), External clock mode
(SPICKSEL[1:0]=0), - - 20 (fDFSDMCLK/4)
SPI mode (SITP[1:0]=0,1), Internal clock mode
(SPICKSEL[1:0]≠0) - - 20 (fDFSDMCLK/4)
fCKOUT Output clock
frequency 1.62 < VDD < 3.6 V - - 20
DuCyCKOUT
Output clock
frequency
duty cycle
1.62 < VDD < 3.6 V
Even
division,CKOUTDIV[7:0]
= n, 1, 3, 5, ...
45 50 55
%
Odd
division,CKOUTDIV[7:0]
= n, 2, 4, 6, ...
(((n/2+1)/(n
−1))*100)−5
(((n/
2+1)/(n
−1))*100)
(((n/2+1)/(n
−1))*100)+5
twh(CKIN)
twl(CKIN)
Input clock
high and low
time
SPI mode
(SITP[1:0]=0,1),
External clock mode
(SPICKSEL[1:0]=0),
1.62 < VDD < 3.6 V
TCKIN/2 - 0.5 TCKIN/2 -
ns
tsu Data input
setup time
SPI mode
(SITP[1:0]=0,1),
External clock mode
(SPICKSEL[1:0]=0),
1.62 < VDD < 3.6 V
4 - -
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 163/234
Symbol Parameter Conditions Min Typ Max Unit
th
ns
Data input
hold time
SPI mode
(SITP[1:0]=0,1),
External clock mode
(SPICKSEL[1:0]=0),
1.62 < VDD < 3.6 V
0.5 - -
TManchester
Manchester
data period
(recovered
clock
period)
Manchester mode
(SITP[1:0]=2,3),
Internal clock mode
(SPICKSEL[1:0]¹0),
1.62 < VDD < 3.6 V
(CKOUTDIV[7:0]+1)
x TDFSDMCLK -(2*CKOUTDIV[7:0])
x TDFSDMCLK
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 164/234
Figure 60. Channel transceiver timing diagrams
SITP = 0
CKOUT
DATINy
SITP = 1
tsu th
tsu th
tftr
twl twh
SPI timing : SPICKSEL = 1, 2, 3
recovered clock
SITP = 2
DATINy
SITP = 3
Manchester timing
recovered data 1 1 000
SITP = 00
CKINyDATINy
SITP = 01
tsu th
tsu th
tftr
twl twh
SPI timing : SPICKSEL = 0
SPICKSEL=2
SPICKSEL=1
(SPICKSEL=0)
SPICKSEL=3
6.3.31 Camera interface (DCMI) timing specifications
Unless otherwise specified, the parameters given in Table 108. DCMI characteristics for DCMI are derived from
tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage summarized in
Table 22. General operating conditions and Table 23. Maximum allowed clock frequencies, with the following
configuration:
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 165/234
DCMI_PIXCLK polarity: falling
DCMI_VSYNC and DCMI_HSYNC polarity: high
Data formats: 14 bits
Capacitive load CL=30 pF
Measurement points are done at CMOS levels: 0.5VDD
Output speed is set to OSPEEDRy[1:0] = 11
VOS level set to VOS0
Table 108. DCMI characteristics
Symbol Parameter Min(1) Max(1) Unit
-Frequency ratio DCMI_PIXCLK/fHCLK - 0.4 -
DCMI_PIXCLK Pixel Clock input - 80 MHz
Dpixel Pixel Clock input duty cycle 30 70 %
tsu(DATA) Data input setup time 2.5 - -
th(DATA) Data hold time 1 -
tsu(HSYNC),
tsu(VSYNC) DCMI_HSYNC/ DCMI_VSYNC input setup time 3 - ns
th(HSYNC),
th(VSYNC) DCMI_HSYNC/ DCMI_VSYNC input hold time 1 - -
1. Guaranteed by design.
Figure 61. DCMI timing diagram
DCMI_PIXCLK
tsu(VSYNC)
tsu(HSYNC)
DCMI_HSYNC
DCMI_VSYNC
DATA[0:13]
1/DCMI_PIXCLK
th(HSYNC)
th(HSYNC)
tsu(DATA) th(DATA)
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 166/234
6.3.32 PSSI interface characteristics
Unless otherwise specified, the parameters given in Table 109 and 110for PSSI are derived from tests performed
under the ambient temperature, fHCLK frequency and VDD supply voltage summarized in Table 22. General
operating conditions and Table 23. Maximum allowed clock frequencies, with the following configuration:
PSSI_PDCK polarity: falling
PSSI_RDY and PSSI_DE polarity: low
Bus width : 16 lines
DATA width : 32 bits
Capacitive load C=30 pF
Measurement points are done at CMOS levels: 0.5VDD
Output speed is set to OSPEEDRy[1:0] = 11
Note: At VOS1, the performance in Transmit mode can be degraded by up to 5 % compared to VOS0. This is
indicated by a footnote when applicable.
Table 109. PSSI transmit characteristics
Guaranteed by characterization results.
Symbol Parameter Min Max(1) Unit
-Frequency ratio PSSI_PDCK/fHCLK - 0.4 -
PSSI_PDCK PSSI clock input - 50 MHz
Dpixel PSSI clock input duty cycle 30 70 %
tdv(DATA) Data output valid time - 10
ns
tdh(DATA) Data output hold time 5 -
tdv((DE) DE output valid time - 14
tdh(DE) DE output hold time 6 -
tsu(RDY) RDY input setup time 3 -
th(RDY) RDY input hold time 0 -
1. At VOS1, these values are degraded by up to 5 %.
Table 110. PSSI receive characteristics
Guaranteed by characterization results.
Symbol Parameter Min Max
-Frequency ratio PSSI_PDCK/fHCLK - 0.4
PSSI_PDCK PSSI clock input - 100
Dpixel PSSI clock input duty cycle 30 70
tsu(DATA) Data input setup time 2 -
th(DATA) Data input hold time 1 -
tsu((DE) DE input setup time 3 -
th(DE) DE input hold time 1 -
tov(RDY) RDY output valid time - 10
toh(RDY) RDY output hold time 4.5 -
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 167/234
Figure 62. PSSI timing diagram in Transmit mode
MSv65388V1
Invalid data OUT
PSSI_PDCK
(input)
CKPOL = 0
PSSI D[15:0]
(output)
CKPOL = 1
tc(PDCK)
PSSI_DE
(output)
DEPOL = 0
DEPOL = 1
Invalid data OUT Valid data OUT
PSSI_RDY
(input)
RDYPOL = 0
RDYPOL = 1
tw(PDCKH) tw(PDCKL) tf(PDCK) tr(PDCK)
tov(DATA) toh(DATA)
toh(DE)
tov(DE)
tsu(RDY) th(RDY)
Figure 63. PSSI timing diagram in Receive mode
MSv65389V1
Invalid data IN
PSSI_PDCK
(input)
CKPOL = 0
PSSI D[15:0]
(input)
CKPOL = 1
tc(PDCK)
PSSI_DE
(output)
DEPOL = 0
DEPOL = 1
Invalid data IN Valid data IN
PSSI_RDY
(input)
RDYPOL = 0
RDYPOL = 1
tw(PDCKH) tw(PDCKL) tf(PDCK) tr(PDCK)
tsu(DATA)
tsu(DE)
tov(RDY) toh(RDY)
thDATA)
th(DE)
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 168/234
6.3.33 LCD-TFT controller (LTDC) characteristics
Unless otherwise specified, the parameters given in Table 111 for LCD-TFT are derived from tests performed
under the ambient temperature, fHCLK frequency and VDD supply voltage summarized in Table 22. General
operating conditions and Table 23. Maximum allowed clock frequencies, with the following configuration:
LCD_CLK polarity: high
LCD_DE polarity: low
LCD_VSYNC and LCD_HSYNC polarity: high
Pixel formats: 24 bits
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL=30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD ≤ 2.7 V
VOS level set to VOS 0
Note: At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote
when applicable.
Table 111. LTDC characteristics
Symbol Parameter Conditions Min Max(1) Unit
fCLK LTDC clock output frequency
2.7 V < VDD < 3.6 V, 20 pF - 140
MHz
2.7 V < VDD < 3.6 V - 133
1.62 V < VDD < 3.6 V - 66.5
DCLK LTDC clock output duty cycle - 45 55 %
tw(CLKH), tw(CLKL) Clock High time, low time tw(CLK)/2−0.5 tw(CLK)/2+0.5
ns
tv(DATA) Data output valid time
2.7 V < VDD < 3.6 V - 3.0
1.62 V < VDD < 3.6 V - 7.5
th(DATA) Data output hold time 0 -
tv(HSYNC), tv(VSYNC), tv(DE) HSYNC/VSYNC/DE output valid time
2.7 V < VDD < 3.6 V - 3.0
1.62 V < VDD < 3.6 V - 7.5
th(HSYNC), th(VSYNC), th(DE) HSYNC/VSYNC/DE output hold time 0 -
1. At VOS1, these values are degraded by up to 5 %.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 169/234
Figure 64. LCD-TFT horizontal timing diagram
LCD_CLK
tv(HSYNC)
LCD_HSYNC
LCD_DE
LCD_R[0:7]
LCD_G[0:7]
LCD_B[0:7]
tCLK
LCD_VSYNC
tv(HSYNC)
tv(DE) th(DE)
Pixel
1
Pixel
2
tv(DATA)
th(DATA)
Pixel
N
HSYNC
width
Horizontal
back porch Active width Horizontal
back porch
One line
Figure 65. LCD-TFT vertical timing diagram
LCD_CLK
tv(VSYNC)
LCD_R[0:7]
LCD_G[0:7]
LCD_B[0:7]
tCLK
LCD_VSYNC
tv(VSYNC)
M lines data
VSYNC
width
Vertical
back porch Active width
One frame
Vertical
back porch
6.3.34 Timer characteristics
The parameters given in Table 112. TIMx characteristics are guaranteed by design.
Refer to Section 6.3.16 I/O port characteristics for details on the input/output alternate function characteristics
(output compare, input capture, external clock, PWM output).
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 170/234
Table 112. TIMx characteristics
Symbol Parameter Conditions(1) Min(2) Max(2) Unit
tres(TIM) Timer resolution time
AHB/APBx prescaler=1 or 2 or 4,
fTIMxCLK = 280 MHz 1 - tTIMxCLK
AHB/APBx prescaler>4, fTIMxCLK =
140 MHz 1 - tTIMxCLK
fEXT Timer external clock frequency on
CH1 to CH4 fTIMxCLK = 280 MHz 0fTIMxCLK/2 MHz
ResTIM Timer resolution - 16/32 bit
tMAX_COUNT Maximum possible count with 32-
bit counter - - 65536 × 65536 tTIMxCLK
1. The maximum timer frequency on APB1 or APB2 is up to 280 MHz, by setting the TIMPRE bit in the RCC_CFGR register. If
APBx prescaler is 1 or 2 or 4, then TIMxCLK = rcc_hclk1, otherwise TIMxCLK = 4x Frcc_pclkx_d2.
2. Guaranteed by design.
6.3.35 Low-power timer characteristics
Table 113. LPTIMx characteristics
Symbol Parameter Min Max Unit
tres(TIM) Timer resolution time 1 - tTIMxCLK
fLPTIMxCLK Timer kernel clock 0 100 MHz
fEXT Timer external clock frequency on Input1 and Input2 0 fLPTIMxCLK/2
ResTIM Timer resolution - 16 bit
tMAX_COUNT Maximum possible count - 65536 tTIMxCLK
6.3.36 Communication interfaces
6.3.36.1 I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user manual revision 03 for:
Standard-mode (Sm): with a bit rate up to 100 kbit/s
Fast-mode (Fm): with a bit rate up to 400 kbit/s
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The parameters given in Table 114 and Table 115are obtained with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 00
Note: At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote
when applicable.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to
RM0455 reference manual) and when the i2c_ker_ck frequency is greater than the minimum shown in the table
below:
Table 114. Minimum i2c_ker_ck frequency in all I2C modes
Symbol Parameter Condition Min Unit
fI2CCLK I2CCLK frequency
Standard-mode - 2
MHz
Fast-mode Analog Filtre ON, DNF=0 9
Analog Filtre OFF, DNF=1 9
Fast-mode Plus Analog Filtre ON, DNF=0 19
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 171/234
Symbol Parameter Condition Min Unit
fI2CCLK I2CCLK frequency Fast-mode Plus Analog Filtre OFF, DNF=1 16 -
The SDA and SCL I/O requirements are met with the following restrictions:
The SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected
between the I/O pin and VDDIOx is disabled, but still present.
The 20 mA output drive requirement in Fast-mode Plus is not supported. This limits the maximum load CLoad
supported in Fm+, which is given by these formulas:
tr(SDA/SCL)=0.8473xRPxCLoad
RP(min)= (VDD-VOL(max))/IOL(max)
Where RP is the I2C lines pull-up. Refer to Section 6.3.16 I/O port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:
Table 115. I2C analog filter characteristics
Symbol Parameter Min(1) Max(1) Unit
tAF Maximum pulse width of spikes that are suppressed by analog filter 50(2) 260(3) ns
1. Guaranteed by design.
2. Spikes whose width is lower than tAF(min) are filtered.
3. Spikes whose width is higer than tAF(max) are not filtered.
6.3.36.2 USART interface characteristics
Unless otherwise specified, the parameters given in Table 116 for USART are derived from tests performed under
the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 22. General
operating conditions and Table 23. Maximum allowed clock frequencies, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
VOS level set to VOS0
Note: At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote
when applicable.
Refer to Section 6.3.16 I/O port characteristics for more details on the input/output alternate function
characteristics (NSS, CK, TX, RX for USART).
Table 116. USART characteristics
Symbol Parameter Conditions Min Typ Max(1) Unit
fCK USART clock frequency
Master mode
- -
35
MHz
Slave receiver mode 93.0
Slave mode transmitter mode, 2.7 V < VDD < 3.6 V 29.0
Slave mode transmitter mode, 1.62 V < VDD < 3.6 V 22.0
tsu(NSS) NSS setup time Slave mode tker+2 - -
-
th(NSS) NSS hold time Slave mode 2 - -
tw(SCKH)
,CK high and low time Master mode 1/fck/2−2 1/fck/2 1/fck/2+2
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 172/234
Symbol Parameter Conditions Min Typ Max(1) Unit
tw(SCKL) -
tsu(MI) Data input setup time Master mode 17 - -
ns
tsu(SI) Slave mode 1 - -
th(MI) Data input hold time Master mode 0 - -
th(SI) Slave mode 1.5 - -
tv(SO)
Data output valid time
Slave mode transmitter mode, 1.62 V < VDD < 3.6 V - 15.5 22
tv(SO) Slave mode transmitter mode, 2.7 V < VDD < 3.6 V - 15.5 17
tv(MO) Master mode - 1.5 2
th(SO) Data output hold time Slave mode 12 - -
th(MO) Master mode 1 - -
1. At VOS1, these values are degraded by up to 5 %.
Figure 66. USART timing diagram in Master mode
MSv65386V1
SCK Output
CPHA=0
TX
OUTPUT
RX
INPUT
CPHA=0
LSB OUT
LSB IN
CPOL=0
CPOL=1
BIT1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL) tr(SCK)/tf(SCK)
th(RX)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(RX)
tv(TX) th(TX)
MSB IN BIT6 IN
MSB OUT
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 173/234
Figure 67. USART timing diagram in Slave mode
MSv65387V1
NSS
input
CPHA=0
CPOL=0
SCK input
CPHA=0
CPOL=1
TX output
RX input
tsu(RX)
th(RX)
tw(SCKL)
tw(SCKH)
tc(SCK)
tr(SCK)
th(NSS)
tdis(TX)
tsu(NSS)
ta(TX) tv(TX)
Next bits IN
Last bit OUT
First bit IN
First bit OUT Next bits OUT
th(TX) tf(SCK)
Last bit IN
6.3.36.3 SPI interface characteristics
Unless otherwise specified, the parameters given in Table 117 for SPI are derived from tests performed under the
ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 22. General
operating conditions and Table 23. Maximum allowed clock frequencies, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD ≤ 2.7 V
VOS level set to VOS0
Note: At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote
when applicable.
Refer to Section 6.3.16 I/O port characteristics for more details on the input/output alternate function
characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 117. SPI dynamic characteristics
Symbol Parameter Conditions Min(1) Typ(1) Max(1)(2) Unit
fSCK SPI clock frequency
Master mode 2.7 < VDD< 3.6 V, SPI1, 2, 3
- -
125/100(3)
MHz
Master mode, 2.7 < VDD<3.6 V, SPI4, 5, 6 100
Master mode, 1.62 < VDD < 3.6 V, SPI4, 5, 6 75/38(3)
Slave receiver mode, 1.62 < VDD < 3.6 V 100
Slave mode transmitter/full duplex, 2.7 < VDD < 3.6 V 45/31(3)
Slave mode transmitter/full duplex, 1.62 <VDD < 3.6 V 29/18(3)
tsu(NSS) NSS setup time Slave mode 2 - -
-
th(NSS) NSS hold time Slave mode 1 - -
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 174/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1)(2) Unit
tw(SCKH), tw(SCKL) -
SCK high and low time Master mode TPCLK−2 TPCLK TPCLK+2
tsu(MI) Data input setup time Master mode 2 - -
ns
tsu(SI) Slave mode 2 - -
th(MI) Data input hold time Master mode 4 - -
th(SI) Slave mode 1 - -
ta(SO) Data output access time Slave mode 9 13 27
tdis(SO) Data output disable time Slave mode 0 1 5
tv(SO)
Data output valid time
Slave mode, 2.7 < VDD < 3.6 V -9/15(3) 11/16(3)
Slave mode, 1.62 < VDD < 3.6 V -9/15(3) 17/27(3)
tv(MO)
Master mode, 2.7 < VDD < 3.6 V -1/5(3) 1.5/7(3)
Master mode, 1.62 < VDD < 3.6 V 1/5(3) 2/13(3)
th(SO) Data output hold time
Slave mode, 1.62 < VDD < 3.6 V 7 - -
th(MO) Master mode 0 - -
1. Guaranteed by characterization results.
2. At VOS1, these values are degraded by up to 5 %.
3. Using PC3_C / PC2_C (not available on all packages).
Figure 68. SPI timing diagram - slave mode and CPHA = 0
NSS input
CPHA=0
CPOL=0
SCK input
CPHA=0
CPOL=1
MISO output
MOSI input
tsu(SI)
th(SI)
tw(SCKL)
tw(SCKH)
tc(SCK)
tr(SCK)
th(NSS)
tdis(SO)
tsu(NSS)
ta(SO) tv(SO)
Next bits IN
Last bit OUT
First bit IN
First bit OUT Next bits OUT
th(SO) tf(SCK)
Last bit IN
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 175/234
Figure 69. SPI timing diagram - slave mode and CPHA = 1(1)
NSS input
CPHA=1
CPOL=0
SCK input
CPHA=1
CPOL=1
MISO output
MOSI input
tsu(SI) th(SI)
tw(SCKL)
tw(SCKH)
tsu(NSS)
tc(SCK)
ta(SO) tv(SO)
First bit OUT Next bits OUT
Next bits IN
Last bit OUT
th(SO) tr(SCK)
tf(SCK) th(NSS)
tdis(SO)
First bit IN Last bit IN
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
Figure 70. SPI timing diagram - master mode(1)
SCK Output
CPHA=0
MOSI
OUTPUT
MISO
INPUT
CPHA=0
LSB OUT
LSB IN
CPOL=0
CPOL=1
BIT1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
MSB IN BIT6 IN
MSB OUT
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
6.3.36.4 I2S Interface characteristics
Unless otherwise specified, the parameters given in Table 118 for I2S are derived from tests performed under the
ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 22. General
operating conditions and Table 23. Maximum allowed clock frequencies, with the following configuration:
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 176/234
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load CL = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD ≤ 2.7 V
VOS level set to VOS0
Note: At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote
when applicable.
Refer to Section 6.3.16 I/O port characteristics for more details on the input/output alternate function
characteristics (CK,SD,WS).
Table 118. I2S dynamic characteristics
Symbol Parameter Conditions Min(1) Max(1)(2) Unit
fMCK I2S main clock output - - 50 MHz
fCK I2S clock frequency
Master TX - 50/33(3)
MHz
Master RX - 40
Slave TX - 31/18.5(3)
Slave RX - 50
tv(WS) WS valid time Master mode - 5.5
ns
th(WS) WS hold time Master mode 0 -
tsu(WS) WS setup time Slave mode 2 -
th(WS) WS hold time Slave mode 1 -
tsu(SD_MR) Data input setup time Master receiver 2 -
tsu(SD_SR) Slave receiver 2 -
th(SD_MR) Data input hold time Master receiver 4.5 -
th(SD_SR) Slave receiver 1 -
tv(SD_ST) Data output valid time Slave transmitter (after enable edge) - 16/27(3)
tv(SD_MT) Master transmitter (after enable edge) - 4/15(3)
th(SD_ST) Data output hold time Slave transmitter (after enable edge) 7 -
th(SD_MT) Master transmitter (after enable edge) 0 -
1. Guaranteed by characterization results.
2. At VOS1, these values are degraded by up to 5 %.
3. Using PC3_C / PC2_C (not available on all packages).
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 177/234
Figure 71. I2S slave timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.
Figure 72. I2S master timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 178/234
6.3.36.5 SAI characteristics
Unless otherwise specified, the parameters given in Table 119 for SAI are derived from tests performed under the
ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 22. General
operating conditions and Table 23. Maximum allowed clock frequencies, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load CL = 30 pF
IO Compensation cell activated.
Measurement points are done at CMOS levels: 0.5VDD
VOS level set to VOS0
Note: At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote
when applicable.
Refer to Section 6.3.16 I/O port characteristics for more details on the input/output alternate function
characteristics (SCK,SD,WS).
Table 119. SAI characteristics
Symbol Parameter Conditions Min(1) Max(1)(2) Unit
fMCK SAI Main clock output - - 50
MHz
fCK SAI clock frequency
Master transmitter, 2.7 ≤ VDD ≤ 3.6 V - 34
Master transmitter, 1.62 ≤ VDD ≤ 3.6 V - 27
Master receiver, 1.6 ≤ VDD ≤ 3.6 V - 27
Slave transmitter, 2.7 ≤ VDD ≤ 3.6 V - 37
Slave transmitter, 1.62 ≤ VDD ≤ 3.6 V - 30
Slave receiver, 1.62 ≤ VDD≤ 3.6 V - 50
tv(FS) FS valid time Master mode,2.7 ≤ VDD ≤ 3.6 V - 14.5
ns
Master mode, 1.62 ≤ VDD ≤ 3.6 V - 18.5
tsu(FS) FS setup time Slave mode 8 -
th(FS)
FS hold time Master mode 1 -
FS hold time Slave mode 2 -
tsu(SD_A_MR) Data input setup time Master receiver 0.5 -
tsu(SD_B_SR) Slave receiver 1 -
th(SD_A_MR) Data input hold time Master receiver 5.5 -
th(SD_B_SR) Slave receiver 3 -
tv(SD_B_ST) Data output valid time
Slave transmitter (after enable edge), 2.7 ≤ VDD ≤ 3.6 V - 13.5
Slave transmitter (after enable edge), 1.62 ≤ VDD ≤ 3.6 V - 16.5
th(SD_B_ST) Data output hold time Slave transmitter (after enable edge) 8 -
tv(SD_A_MT) Data output valid time
Master transmitter (after enable edge), 2.7 ≤ VDD ≤ 3.6 V - 14
Master transmitter (after enable edge), 1.62 ≤ VDD ≤ 3.6 V - 18
th(SD_A_MT) Data output hold time Master transmitter (after enable edge) 7.5 -
1. Guaranteed by characterization results.
2. At VOS1, these values are degraded by up to 5 %.
3. APB clock frequency must be at least twice SAI clock frequency.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 179/234
Figure 73. SAI master timing waveforms
SAI_SCK_X
SAI_FS_X(output)
1/fSCK
SAI_SD_X(transmit)
tv(FS)
Slot n
SAI_SD_X(receive)
th(FS)
Slot n+2
tv(SD_MT) th(SD_MT)
Slot n
tsu(SD_MR) th(SD_MR)
Figure 74. SAI slave timing waveforms
SAI_SCK_X
SAI_FS_X(input)
SAI_SD_X(transmit)
tsu(FS)
Slot n
SAI_SD_X(receive)
tw(CKH_X) th(FS)
Slot n+2
tv(SD_ST) th(SD_ST)
Slot n
tsu(SD_SR)
tw(CKL_X)
th(SD_SR)
1/fSCK
6.3.36.6 MDIO characteristics
Unless otherwise specified, the parameters given in Table 120 are derived from tests performed under the
ambient temperature, fHCLK frequency and VDD supply voltage summarized in Table 22. General operating
conditions, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Measurement points are done at CMOS levels: 0.5VDD
I/O compensation cell activated.
HSLV activated when VDD ≤ 2.7 V
VOS level set to VOS0
Note: At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote
when applicable.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 180/234
Table 120. MDIO Slave timing parameters
Symbol Parameter Min Typ Max(1) Unit
FMDC Management Data Clock - - 30 MHz
td(MDIO) Management Data Iput/output output valid time 9 11 21
ns
tsu(MDIO) Management Data Iput/output setup time 2.5 - -
th(MDIO) Management Data Iput/output hold time 1 - -
1. At VOS1, these values are degraded by up to 5 %.
Figure 75. MDIO Slave timing diagram
tsu(MDIO)
tMDC)
th(MDIO)
td(MDIO)
6.3.36.7 SD/SDIO MMC card host interface (SDMMC) characteristics
Unless otherwise specified, the parameters given in Table 121 and Table 122 for SDIO are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage summarized in
Table 22. General operating conditions and Table 23. Maximum allowed clock frequencies, with the following
configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL=30 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
HSLV activated when VDD ≤ 2.7 V
VOS level set to VOS0
Note: At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote
when applicable.
Refer to Section 6.3.16 I/O port characteristics for more details on the input/output characteristics.
Table 121. Dynamics characteristics: SDMMC characteristics, VDD=2.7 to 3.6 V
Above 100 MHz, CL = 20 pF.
Symbol Parameter Conditions Min(1) Typ(1) Max(1)(2) Unit
fPP Clock frequency in data transfer mode - 0 - 133 MHz
-SDIO_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time fPP =52 MHz 8.5 9.5 - ns
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 181/234
Symbol Parameter Conditions Min(1) Typ(1) Max(1)(2) Unit
tW(CKH) ns
Clock high time fPP =52 MHz 8.5 9.5 -
CMD, D inputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR/DDR mode
tISU Input setup time HS - 1.5 - - ns
tIH Input hold time HS - 1.5 - -
tIDW(3) Input valid window (variable window) - 3.0 - - -
CMD, D outputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR/DDR mode
tOV Output valid time HS - - 6 6.5 ns
tOH Output hold time HS - 5 - -
CMD, D inputs (referenced to CK) in SD default mode
tISUD Input setup time SD - 1.5 - ns
tIHD Input hold time SD - 1.5 -
CMD, D outputs (referenced to CK) in SD default mode
tOVD Output valid default time SD - - 1 1.5 ns
tOHD Output hold default time SD - 0 - -
1. Guaranteed by characterization results.
2. At VOS1, these values are degraded by up to 5 %.
3. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.
Table 122. Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V
Above 100 MHz, CL = 20 pF.
Symbol Parameter Conditions Min(1) Typ(1) Ma(1)(2) Unit
fPP Clock frequency in data transfer mode - 0 - 85 MHz
-SDIO_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time fPP =52 MHz 8.5 9.5 - ns
tW(CKH) Clock high time fPP =52 MHz 8.5 9.5 -
CMD, D inputs (referenced to CK) in eMMC mode
tISU Input setup time HS - 1.5 - -
ns
tIH Input hold time HS - 1.5 - -
tIDW(3) Input valid window (variable window) - 3.5 - -
CMD, D outputs (referenced to CK) in eMMC mode
tOVD Output valid time HS - - 6 6.5 ns
tOHD Output hold time HS - 5.5 - -
1. Guaranteed by characterization results.
2. At VOS1, these values are degraded by up to 5 %.
3. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 182/234
Figure 76. SDIO high-speed mode
Figure 77. SD default mode
CK
D, CMD(output)
tOVD tOHD
Figure 78. DDR mode
Data output IO0 IO2 IO4
Clock
Data input IO0 IO2 IO4
t(CLK) tw(CLKH) tw(CLKL)
tr(CLK) tf(CLK)
tsf(IN) thf(IN)
tvf(OUT) thr(OUT)
IO1 IO3 IO5
IO1 IO3 IO5
tvr(OUT) thf(OUT)
tsr(IN) thr(IN)
6.3.36.8 USB OTG_FS characteristics
Unless otherwise specified, the parameters given in Table 123. Dynamics characteristics: USB OTG_FS for ULPI
are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
summarized in Table 22. General operating conditions and Table 23. Maximum allowed clock frequencies, with
the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 183/234
Capacitive load CL=20 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
VOS level set to VOS0
Refer to Section 6.3.16 I/O port characteristics for more details on the input/output characteristics.
Table 123. Dynamics characteristics: USB OTG_FS
Symbol Parameter Condition Min Typ Max Unit
VDD33USB USB transceiver operating voltage - 3.0(1) - 3.6 V
RPUI Embedded USB_DP pull-up value during idle - 900 1250 1600
RPUR Embedded USB_DP pull-up value during reception - 1400 2300 3200
ZDRV Output driver impedance(2) Driver high and low 28 36 44
1. The USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics that are degraded in the 2.7 to
3.0 V voltage range.
2. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching impedance is
already included in the embedded driver.
6.3.36.9 USB OTG_HS characteristics
Unless otherwise specified, the parameters given in Table 124 for ULPI are derived from tests performed under
the ambient temperature, fPCLKx frequency and VDD supply voltage summarized in Table 22. General operating
conditions and Table 23. Maximum allowed clock frequencies, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load CL=20 pF
Measurement points are done at CMOS levels: 0.5VDD
IO Compensation cell activated.
VOS level set to VOS0
Note: At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote
when applicable.
Refer to Section 6.3.16 I/O port characteristics for more details on the input/output characteristics.
Table 124. Dynamics characteristics: USB ULPI
Symbol Parameter Condition Min(1) Typ(1) Max(1)(2)(3) Unit
tSC Control in (ULPI_DIR , ULPI_NXT) setup time - 3.5 - -
ns
tHC Control in (ULPI_DIR, ULPI_NXT) hold time - 2 - -
tSD Data in setup time - 3 - -
tHD Data in hold time - 0 - -
tDC/tDD Control/Datal output delay
2.7 < VDD < 3.6 V, CL=20 pF - 7 8.5
1.71 < VDD < 3.6 V, CL=15 pF - 9 13
1. Guaranteed by characterization results.
2. At VOS1, these values are degraded by up to 5 %.
3. For external ULPI transceivers operating at 1.8 V, check carefully the timing values for compatibility.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 184/234
Figure 79. ULPI timing diagram
Clock
Control In
(ULPI_DIR,ULPI_NXT)
data In
(8-bit)
Control out
(ULPI_STP)
data out
(8-bit)
tDD
tDC
tHD
tSD
tHC
tSC
tDC
6.3.36.10 JTAG/SWD interface characteristics
Unless otherwise specified, the parameters given in Table 125 and Table 126 for JTAG/SWD are derived from
tests performed under the ambient temperature, frcc_cpu_ck frequency and VDD supply voltage summarized in
Table 22. General operating conditions and Table 23. Maximum allowed clock frequencies, with the following
configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load CL=30 pF
Measurement points are done at CMOS levels: 0.5VDD
VOS level set to VOS0
Note: At VOS1, the performance can be degraded by up to 5 % compared to VOS0. This is indicated by a footnote
when applicable.
Refer to Section 6.3.16 I/O port characteristics for more details on the input/output characteristics:
Table 125. Dynamics JTAG characteristics
Symbol Parameter Conditions Min Typ Max(1) Unit
Fpp TCK clock frequency 2.7 V <VDD< 3.6 V - - 35 MHz
1/tc(TCK) 1.62 V <VDD< 3.6 V - - 27.5
ns
tisu(TMS) TMS input setup time - 1 - -
tih(TMS) TMS input hold time - 1 - -
tisu(TDI) TDI input setup time - 1.5 - -
tih(TDI) TDI input hold time - 1 - -
tov(TDO) TDO output valid time
2.7 V <VDD< 3.6 V - 8 14
1.62 V <VDD< 3.6 V - 8 18
toh(TDO) TDO output hold time - 7 - -
1. At VOS1, these values are degraded by up to 5 %.
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 185/234
Table 126. Dynamics SWD characteristics
Symbol Parameter Conditions Min Typ Max(1) Unit
Fpp SWCLK clock frequency
2.7V <VDD< 3.6 V - - 76 MHz
1/tc(SWCLK) 1.62 <VDD< 3.6 V - - 55.5
tisu(SWDIO) SWDIO input setup time - 2 - -
ns
tih(SWDIO) SWDIO input hold time - 1 - -
tov(SWDIO) SWDIO output valid time
2.7V <VDD< 3.6 V - 8.5 13
1.62 <VDD< 3.6 V - 8.5 18
toh(SWDIO) SWDIO output hold - 8 - -
1. At VOS1, these values are degraded by up to 5 %.
Figure 80. JTAG timing diagram
TDI/TMS
TCK
TDO
tc(TCK)
tw(TCKL) tw(TCKH)
th(TMS/TDI)
tsu(TMS/TDI)
tov(TDO) toh(TDO)
Figure 81. SWD timing diagram
SWDIO
SWCLK
SWDIO
tc(SWCLK)
twSWCLKL) tw(SWCLKH)
th(SWDIO)
tsu(SWDIO)
tov(SWDIO) toh(SWDIO)
(receive)
(transmit)
STM32H7B3xI
Operating conditions
DS13139 - Rev 6 page 186/234
7Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
STM32H7B3xI
Package information
DS13139 - Rev 6 page 187/234
7.1 LQFP64 package information
This is a 64-pins, 10 x 10 mm, low-profile quad flat package.
Figure 82. LQFP64 - Outline
A1
A2
A
SEATING PLANE
ccc C
b
C
c
A1
L
L1
K
IDENTIFICATION
PIN 1
D
D1
D3
e
116
17
32
33
48
49
64
E3
E1
E
GAUGE PLANE
0.25 mm
1. Drawing is not to scale.
STM32H7B3xI
LQFP64 package information
DS13139 - Rev 6 page 188/234
Table 127. LQFP64 pin - Mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A- - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 3.5° 3.5°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 83. LQFP64 - Recommended footprint
48
32
49
64 17
116
1.2
0.3
33
10.3
12.7
10.3
0.5
7.8
12.7
1. Dimensions are expressed in millimeters.
7.1.1 Device marking for LQFP64
The following figure gives an example of topside marking versus pin 1 position identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.
STM32H7B3xI
LQFP64 package information
DS13139 - Rev 6 page 189/234
Figure 84. LQFP64 marking example (package top view)
Revision code
ES32H7B3
RIT6
Y WW
Product identification(1)
Date code
Pin 1 indentifier
R
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting from
such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
STM32H7B3xI
LQFP64 package information
DS13139 - Rev 6 page 190/234
7.2 LQFP100 package information
This LQFP is a 100 pins, 14 x 14 mm, low-profile quad flat package.
Figure 85. LQFP100 - Outline
e
IDENTIFICATION
PIN 1
GAUGE PLANE
0.25 mm
SEATING PLANE
D
D1
D3
E3
E1
E
K
ccc C
C
125
26
100
76
75 51
50
A2
A
A1
L1
L
c
b
A1
1. Drawing is not to scale
STM32H7B3xI
LQFP100 package information
DS13139 - Rev 6 page 191/234
Table 128. LQFP100 - Mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A- - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 86. LQFP100 - Recommended footprint
75 51
5076 0.5
0.3
16.7 14.3
100 26
12.3
25
1.2
16.7
1
1. Dimensions are expressed in millimeters.
STM32H7B3xI
LQFP100 package information
DS13139 - Rev 6 page 192/234
7.2.1 Device marking for LQFP100
The following figure gives an example of topside marking versus pin 1 position identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.
Figure 87. LQFP100 marking example (package top view)
ES32H7B3
VIT6Q
Y WW
Revision code
Product identification(1)
Pin 1
indentifier
Date code
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting from
such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
STM32H7B3xI
LQFP100 package information
DS13139 - Rev 6 page 193/234
7.3 TFBGA100 package information
This is a 100 balls, 8x8 mm, 0.8 mm pitch fine pitch ball grid array.
Figure 88. TFBGA100 - Outline
SEATING
PLANE
12345678910
K
J
H
G
F
E
D
C
B
A
A2
A1
A
C
ddd C
(100 BALLS)
b
eee
fff
C A B
C
D
E
F
e
B
Ge
A1 ball
identifier
A1 ball
index
area
A
D1
E1
BOTTOM VIEW TOP VIEW
Table 129. TFBGA100 - Mechanical data
Symbol
millimeters inches (1)
Min Typ Max Min Typ Max
A- - 1.100 - - 0.0433
A1 0.150 - - 0.0059 - -
A2 - 0.760 - - 0.0299 -
b 0.350 0.400 0.450 0.0138 0.0157 0.0177
D 7.850 8.000 8.150 0.3091 0.3150 0.3209
D1 - 7.200 - 0.2835 -
E 7.850 8.000 8.150 0.3091 0.3150 0.3209
STM32H7B3xI
TFBGA100 package information
DS13139 - Rev 6 page 194/234
Symbol
millimeters inches (1)
Min Typ Max Min Typ Max
E1 - 7.200 - - 0.2835 -
e - 0.800 - - 0.0315 -
F - 0.400 - - 0.0157 -
G - 0.400 - - 0.0157 -
ddd - - 0.100 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 89. TFBGA100 - Recommended footprint
Dpad
Dsm
1. Dimensions are expressed in millimeters.
Table 130. TFBGA100 - Recommended PCB design rules (0.8 mm pitch)
Dimension Recommended values
Pitch 0.8
Dpad 0.400 mm
Dsm 0.470 mm typ. (depends on the soldermask registration tolerance)
Stencil opening 0.400 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.120 mm
STM32H7B3xI
TFBGA100 package information
DS13139 - Rev 6 page 195/234
7.3.1 Device marking for TFBGA100
The following figure gives an example of topside marking versus pin 1 position identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.
Figure 90. TFBGA100 marking example (package top view)
ES32H7B3
VIH6
Y WW
Revision code
Product identification(1)
Date code
Ball 1
indentifier
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting from
such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
STM32H7B3xI
TFBGA100 package information
DS13139 - Rev 6 page 196/234
7.4 WLCSP132 package information
This is a 132 balls, 4.57 x 4.37 mm, 0.35 mm pitch, wafer level chip scale package.
Figure 91. WLCSP132 - Outline
e1
G
e
e2E
D
BOTTOM VIEW
A1 BALL LOCATION
E
D
TOP VIEW
DETAIL A
A1
A2
A
SIDE VIEW
FRONT VIEW
A3
DETAIL A
ROTATED 90
SEATING PLANE
BUMP
F
12 1
L
A
b
eee Z
ccc Z
ZX
ddd Y
b (132x) Z
aaa
(4x)
bbb Z
1. Drawing is not to scale.
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
4. Bump position designation per JESD 95-1, SPP-010.
Table 131. WLCSP132 - Mechanical data
Symbol
millimeters inches (1)
Min Typ Max Min Typ Max
A- - 0.58 - - 0.023
A1 - 0.17 - - 0.007 -
A2 - 0.38 - - 0.015 -
A3 - 0.025 - - 0.001 -
b 0.21 0.24 0.27 0.008 0.009 0.011
D 4.54 4.57 4.60 0.179 0.180 0.181
E 4.35 4.37 4.39 0.171 0.172 0.173
STM32H7B3xI
WLCSP132 package information
DS13139 - Rev 6 page 197/234
Symbol
millimeters inches (1)
Min Typ Max Min Typ Max
e- 0.35 - - 0.014 -
e1 - 3.85 - - 0.152 -
e2 - 3.50 - - 0.138 -
F (2) - 0.360 - - 0.014 -
G(2) - 0.435 - - 0.017 -
aaa - 0.10 - - 0.004 -
bbb - 0.10 - - 0.004 -
ccc - 0.10 - - 0.004 -
ddd - 0.05 - - 0.002 -
eee - 0.05 - - 0.002 -
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Calculated dimensions are rounded to the 3rd decimal place
Figure 92. WLCSP132 - Recommended footprint
Dsm
Dpad
1. Dimensions are expressed in millimeters.
Table 132. WLCSP132 - Recommended PCB design rules
Dimension Recommended values
Pitch 0.35 mm
Dpad 0,200 mm
Dsm 0.200 mm typ. (depends on soldermask registration tolerance)
Stencil opening 0.250 mm
Stencil thickness 0.080 mm
7.4.1 Device marking for WLCSP132
The following figure gives an example of topside marking versus pin 1 position identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.
STM32H7B3xI
WLCSP132 package information
DS13139 - Rev 6 page 198/234
Figure 93. WLCSP132 marking example (package top view)
E7B3QIY6Q
Y WW
Product
identification(1)
Ball 1 indentifier
R
Revision code
Date code
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting from
such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
STM32H7B3xI
WLCSP132 package information
DS13139 - Rev 6 page 199/234
7.5 LQFP144 package information
This is a 144 pins, 20 x 20 mm, low-profile quad flat package.
Figure 94. LQFP144 - Outline
e
IDENTIFICATION
PIN 1
GAUGE PLANE
0.25 mm
SEATING
PLANE
D
D1
D3
E3
E1
E
K
ccc C
C
136
37
144
109
108 73
72
A2
A
A1
L1
L
c
b
A1
1. Drawing is not to scale.
STM32H7B3xI
LQFP144 package information
DS13139 - Rev 6 page 200/234
Table 133. LQFP144 - Mechanical data
Symbol
millimeters inches (1)
Min Typ Max Min Typ Max
A- - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.8740
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 - 17.500 - - 0.6890 -
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 - 17.500 - - 0.6890 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 3.5° 3.5°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 95. LQFP144 - Recommended footprint
0.5
0.35
19.9 17.85
22.6
1.35
22.6
19.9
136
37
72
73108
109
144
1. Dimensions are expressed in millimeters.
STM32H7B3xI
LQFP144 package information
DS13139 - Rev 6 page 201/234
7.5.1 Device marking for LQFP144
The following figure gives an example of topside marking versus pin 1 position identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.
Figure 96. LQFP144 marking example (package top view)
ES32H7B3ZIT6U
Y WW
Revision code
Product identification(1)
Date code
Pin 1
indentifier
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting from
such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
STM32H7B3xI
LQFP144 package information
DS13139 - Rev 6 page 202/234
7.6 LQFP176 package information
This is a 176 pins, 24 x 24 mm, low profile quad flat package outline.
Figure 97. LQFP176 - Outline
A2
A
e
EHE
D
HD
ZD
ZE
b
0.25 mm
gauge plane
A1
L
L1
k
c
IDENTIFICATION
PIN 1
Seating plane
C
A1
1. Drawing is not to scale.
Table 134. LQFP176 - Mechanical data
Ref.
Dimensions
Millimeters Inches (1)
Min. Typ. Max. Min. Typ. Max.
A- - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 - 1.450 0.0531 - 0.0571
b 0.170 - 0.270 0.0067 - 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 23.900 - 24.100 0.9409 - 0.9488
HD 25.900 - 26.100 1.0197 - 1.0276
ZD - 1.250 - - 0.0492 -
E 23.900 - 24.100 0.9409 - 0.9488
HE 25.900 - 26.100 1.0197 - 1.0276
ZE - 1.250 - - 0.0492 -
e - 0.500 - - 0.0197 -
L (2) 0.450 - 0.750 0.0177 - 0.0295
STM32H7B3xI
LQFP176 package information
DS13139 - Rev 6 page 203/234
Ref.
Dimensions
Millimeters Inches (1)
Min. Typ. Max. Min. Typ. Max.
L1 - 1.000 - - 0.0394 -
k - -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.
Figure 98. LQFP176 - Recommended footprint
133
132
1.2
0.3
0.5
89
88 1.2
44
45
21.8
26.7
1176
26.7
21.8
1. Dimensions are expressed in millimeters.
7.6.1 Device marking for LQFP176
The following figure gives an example of topside marking versus pin 1 position identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.
STM32H7B3xI
LQFP176 package information
DS13139 - Rev 6 page 204/234
Figure 99. LQFP176 marking example (package top view)
ES32H7B3IIT6
Y WW
Revision code
Product identification(1)
Date code
Pin 1
indentifier
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting from
such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
STM32H7B3xI
LQFP176 package information
DS13139 - Rev 6 page 205/234
7.7 TFBGA216 package information
This is a 216 balls, 13x13 mm, 0.8 mm pitch, fine pitch ball grid array package outline.
Figure 100. TFBGA216 - Outline
Seating plane
A1
eF
G
D
R
Øb (216 balls)
A
E
TOP VIEWBOTTOM VIEW 115
e
A
A2
Y
X
Z
ddd Z
D1
E1
eee Z Y X
fff
Ø
Ø
M
MZ
A1 ball
identifier
A1 ball
index area
1. Drawing is not to scale.
Table 135. TFBGA216 - Mechanical data
Symbol
millimeters inches (1)
Min Typ Max Min Typ Max
A- - 1.100 - - 0.0433
A1 0.150 - - 0.0059 - -
A2 - 0.760 - - 0.0299 -
b 0.350 0.400 0.450 0.0138 0.0157 0.0177
D 12.850 13.000 13.150 0.5059 0.5118 0.5177
D1 - 11.200 - - 0.4409 -
E 12.850 13.000 13.150 0.5059 0.5118 0.5177
E1 - 11.200 - - 0.4409 -
e - 0.800 - - 0.0315 -
F - 0.900 - - 0.0354 -
G - 0.900 - - 0.0354 -
ddd - - 0.100 - - 0.0039
eee - - 0.150 - - 0.0059
STM32H7B3xI
TFBGA216 package information
DS13139 - Rev 6 page 206/234
Symbol
millimeters inches (1)
Min Typ Max Min Typ Max
fff - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 101. TFBGA216 - Recommended footprint
Dpad
Dsm
1. Dimensions are expressed in millimeters.
Table 136. TFBGA216 - Recommended PCB design rules (0.8 mm pitch)
Dimension Recommended values
Pitch 0.8 mm
Dpad 0.225 mm
Dsm 0.290 mm typ. (depends on the soldermask registration tolerance)
Stencil opening 0.250 mm
Stencil thickness 0.100 mm
7.7.1 Device marking for TFBGA216
The following figure gives an example of topside marking versus pin 1 position identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.
STM32H7B3xI
TFBGA216 package information
DS13139 - Rev 6 page 207/234
Figure 102. TFBGA216 marking example (package top view)
ES32H7B3
NIH6
Y WW
Product
identification(1)
Ball 1 indentifier
R
Revision code
Date code
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting from
such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
STM32H7B3xI
TFBGA216 package information
DS13139 - Rev 6 page 208/234
7.8 TFBGA225 package information
This is a 225 balls, 13x13 mm, 0.8 mm pitch, thin profile fine pitch ball grid array package.
Figure 103. TFBGA225 - Outline
H
D
E
E1
D1
F
G
e
eD
A
B
C
E
F
K
G
J
L
M
N
P
R
1
2
3
4
5
6
7
8
9
10
11
12
15 13
14
A1 corner index area
b (225 balls)
eee M
f f f M
A
C
CB
C
Seating plane
A2 A1 A
eee C
BOTTOM VIEW TOP VIEW
SIDE VIEW
1. The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metalized
markings, or other feature of package body or integral heat slug.
2. A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner.
Exact shape of each corner is optional
Table 137. TFBGA225 - Mechanical data
Symbol
millimeters inches (1)
Min Typ Max Min Typ Max
A (2) - - 1.200 - - 0.0472
A1 0.150 - - 0.0059 - -
A2 - 0.760 - - 0.0299 -
b (3) 0.350 0.400 0.450 0.0138 0.0157 0.0177
D 12.850 13.000 13.150 0.5059 0.5118 0.5177
D1 - 11.200 - - 0.4409 -
E 12.850 13.000 13.150 0.5059 0.5118 0.5177
STM32H7B3xI
TFBGA225 package information
DS13139 - Rev 6 page 209/234
Symbol
millimeters inches (1)
Min Typ Max Min Typ Max
E1 - 11.200 - - 0.4409 -
e - 0.800 - - 0.0315 -
F - 0.900 - - 0.0354 -
G - 0.900 - - 0.0354 -
ddd - - 0.100 - - 0.0039
eee (4)(5) - - 0.150 - - 0.0059
fff (6) - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. The total profile height (Dim A) is measured from the seating plane to the top of the component.
3. Initial ball equal 0.350 mm.
4. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to
datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.
5. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B.
6. For each ball there is a cylindrical tolerance zone perpendicular to datum C and located on true position as defined by e.
The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone in the array is
contained entirely in the respective zone eee above The axis of each ball must lie simultaneously in both tolerance zones.
7. The tolerance of position that controls the location of the balls within the matrix with respect to each other.(7)
Figure 104. TFBGA225 - Recommended footprint
Dpad
Dsm
1. Dimensions are expressed in millimeters.
Table 138. TFBGA225 - Recommended PCB design rules (0.8 mm pitch BGA)
Dimension Recommended values
Pitch 0.8 mm
Dpad 0.400 mm
Dsm 0.470 mm typ.
Stencil opening 0.400 mm
Stencil thickness 0.100 mm
STM32H7B3xI
TFBGA225 package information
DS13139 - Rev 6 page 210/234
7.8.1 Device marking for TFBGA225
The following figure gives an example of topside marking versus pin 1 position identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.
Figure 105. TFBGA225 marking example (package top view)
ES32H7B3
LIH6QU
Y WW
Revision code
Product identification(1)
Date code
Ball 1
indentifier
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting from
such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
STM32H7B3xI
TFBGA225 package information
DS13139 - Rev 6 page 211/234
7.9 UFBGA169 package information
This is a 169 balls, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.
Figure 106. UFBGA169 - Outline
Seating plane
A2
A1
A
eF
F
e
N
A
BOTTOM VIEW
E
D
TOP VIEW
Øb (1 69 balls)
Y
X
Yeee
ØM
fff
ØM
Z
Z
X
A1 ball
identifier
A1 ball
index area
b
D1
E1
A4
A3
13 1
Z
Z
ddd
SIDE VIEW
1. Drawing is not to scale.
Table 139. UFBGA169 - Mechanical data
Symbol
millimeters inches (1)
Min. Typ. Max. Min. Typ. Max.
A0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 - 0.130 - - 0.0051 -
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.230 0.280 0.330 0.0091 0.0110 0.0130
D 6.950 7.000 7.050 0.2736 0.2756 0.2776
D1 5.950 6.000 6.050 0.2343 0.2362 0.2382
E 6.950 7.000 7.050 0.2736 0.2756 0.2776
E1 5.950 6.000 6.050 0.2343 0.2362 0.2382
e - 0.500 - - 0.0197 -
F 0.450 0.500 0.550 0.0177 0.0197 0.0217
ddd - - 0.100 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
STM32H7B3xI
UFBGA169 package information
DS13139 - Rev 6 page 212/234
Figure 107. UFBGA169 - Recommended footprint
Dsm
Dpad
Table 140. UFBGA169 - Recommended PCB design rules (0.5 mm pitch BGA)
Dimension Recommended values
Pitch 0.5
Dpad 0.27 mm
Dsm 0.35 mm typ. (depends on the soldermask registration tolerance)
Solder paste 0.27 mm aperture diameter.
Note: Non-solder mask defined (NSMD) pads are recommended.
4 to 6 mils solder paste screen printing process.
7.9.1 Device marking for UFBGA169
The following figure gives an example of topside marking versus pin 1 position identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.
STM32H7B3xI
UFBGA169 package information
DS13139 - Rev 6 page 213/234
Figure 108. UFBGA169 marking example (package top view)
32H7B3
AII6Q
Y WW
Revision code
Product identification(1)
Date code
Ball 1
indentifier
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting from
such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
STM32H7B3xI
UFBGA169 package information
DS13139 - Rev 6 page 214/234
7.10 UFBGA176+25 package information
This is a 176+25 balls, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package.
Figure 109. UFBGA176+25 - Outline
D1
Seating plane
A2
Cddd
A1 A
eZ
Z
e
R
A
15 1
BOTTOM VIEW
E
D
TOP VIEW
Øb (176 + 25 balls)
B
A
BeeeØ M
fffØ M
C
C
A
C
A1 ball
identifier
A1 ball
index
area
b
A4
E1
A3
1. Drawing is not to scale.
Table 141. UFBGA 176+25 - Mechanical data
Symbol
millimeters inches (1)
Min. Typ. Max. Min. Typ. Max.
A(2) - - 0.600 - - 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 - 0.450 - - 0.0177 -
A3 - 0.130 - - 0.0051 -
A4 - 0.320 - - 0.0126 -
b 0.240 0.290 0.340 0.0094 0.0114 0.0134
D 9.850 10.000 10.150 0.3878 0.03937 0.3996
D1 - 9.100 - - 0.3583 -
E 9.850 10.000 10.150 0.3878 0.03937 0.3996
E1 - 9.100 - - 0.3583 -
e - 0.650 - - 0.0256 -
F - 0.450 - - 0.0177 -
ddd - - 0.080 - - 0.0031
eee (3) - - 0.015 - - 0.0059
fff(4) - - 0.050 - - 0.0020
STM32H7B3xI
UFBGA176+25 package information
DS13139 - Rev 6 page 215/234
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Ultra thin profile: 0.50 < A Max \u0001 0.65mm / Fine pitch: e < 1.00mm. The total profile height (Dim.A) is measured from
the seating plane “C” to the top of the component.
3. The tolerance of position that controls the location of the pattern of balls with respect to datum A and B. For each ball there
is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datum A and B as
defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.
4. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball
there is a cylindrical tolerance zone perpendicular to datum C and located on true position as defined by e. The axis
perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone in the array is contained
entirely in the respective zone eee above The axis of each ball must lie simultaneously in both tolerance zones.
Figure 110. UFBGA176+25 - Recommended footprint
Dpad
Dsm
Table 142. UFBGA176+25 - Recommended PCB design rules (0.65 mm pitch)
Dimension Recommended values
Pitch 0.65 mm
Dpad 0.300 mm
Dsm 0.400 mm typ. (depends on the soldermask registration tolerance)
Stencil opening 0.300 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.100 mm
7.10.1 Device marking for UFBGA176+25
The following figure gives an example of topside marking versus pin 1 position identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.
STM32H7B3xI
UFBGA176+25 package information
DS13139 - Rev 6 page 216/234
Figure 111. UFBGA176+25 marking example (package top view)
ES32H7B3
IIK6Q
Y WW
Revision code
Product identification(1)
Date code
Ball 1
indentifier
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting from
such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
7.11 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following
equation:
TJmax = TAmax + (PDmax × ΘJA)
Where:
TAmax is the maximum ambient temperature in °C,
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax),
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power.
PI/Omax represents the maximum power dissipation on output pins where:
PI/Omax = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application.
Table 143. Thermal characteristics
Symbol Definition Parameter value unit
ΘJA Thermal resistance
junction-ambiant
Thermal resistance junction-ambient LQFP64 - 10 x 10 mm /0.5 mm
pitch 48.8 °C/W
STM32H7B3xI
Thermal characteristics
DS13139 - Rev 6 page 217/234
Symbol Definition Parameter value unit
ΘJA Thermal resistance
junction-ambiant
Thermal resistance junction-ambient LQFP100 - 14 x 14 mm /0.5 mm
pitch
°C/W
47.4
Thermal resistance junction-ambient LQFP144 - 20 x 20 mm /0.5 mm
pitch 46
Thermal resistance junction-ambient LQFP176 - 24 x 24 mm /0.5 mm
pitch 43.6
Thermal resistance junction-ambient TFBGA100 - 8 x 8 mm /0.8 mm
pitch 41.3
Thermal resistance junction-ambient TFBGA216 13 x 13 mm /0.8 mm
pitch 39.4
Thermal resistance junction-ambient TFBGA225 13 x 13 mm /0.8 mm
pitch 38.7
Thermal resistance junction-ambient UFBGA169 - 7 x 7 mm /0.5 mm
pitch 41.4
Thermal resistance junction-ambient UFBGA176+25 - 10 x 10 mm /
0.65 mm pitch 44.4
Thermal resistance junction-ambient WLCSP132 - 4.57 x 4.37 mm /
0.35 mm pitch 34.6
ΘJB Thermal resistance
junction-board
Thermal resistance junction-board LQFP64 - 10 x 10 mm /0.5 mm pitch 37.2
°C/W
Thermal resistance junction-board LQFP100 - 14 x 14 mm /0.5 mm
pitch 39.2
Thermal resistance junction-board LQFP144 - 20 x 20 mm /0.5 mm
pitch 41.3
Thermal resistance junction-board LQFP176 - 24 x 24 mm /0.5 mm
pitch 40.2
Thermal resistance junction-board TFBGA100 - 8 x 8 mm /0.8 mm pitch 19
Thermal resistance junction-board UFBGA169 - 7 x 7 mm /0.5 mm pitch 15.3
Thermal resistance junction-board UFBGA176+25 - 10 x 10 mm /0.65
mm pitch 25
Thermal resistance junction-board TFBGA216 13 x 13 mm /0.8 mm
pitch 21.9
Thermal resistance junction-board TFBGA225 13 x 13 mm /0.8 mm
pitch 20.3
Thermal resistance junction-board WLCSP132 - 4.57 x 4.37 mm /0.35
mm pitch NA
ΘJC Thermal resistance
junction-case
Thermal resistance junction-case LQFP64 - 10 x 10 mm /0.5 mm pitch 13
°C/W
Thermal resistance junction-case LQFP100 - 14 x 14 mm /0.5 mm pitch 12.8
Thermal resistance junction-case LQFP144 - 20 x 20 mm /0.5 mm pitch 12.6
Thermal resistance junction-case LQFP176 - 24 x 24 mm /0.5 mm pitch 11.5
Thermal resistance junction-case TFBGA100 - 8 x 8 mm /0.8 mm pitch 22.2
Thermal resistance junction-case UFBGA169 - 7 x 7 mm /0.5 mm pitch 19.9
Thermal resistance junction-case UFBGA176+25 - 10 x 10 mm /0.65
mm pitch 18.9
Thermal resistance junction-case TFBGA216 13 x 13 mm /0.8 mm pitch 22.2
Thermal resistance junction-case TFBGA225 13 x 13 mm /0.8 mm pitch 22.2
Thermal resistance junction-case WLCSP132 - 4.57 x 4.37 mm /0.35
mm pitch NA
STM32H7B3xI
Thermal characteristics
DS13139 - Rev 6 page 218/234
7.11.1 Reference documents
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air).
Available from www.jedec.org.
For information on thermal management, refer to application note “Thermal management guidelines for
STM32 32-bit Arm Cortex MCUs applications” (AN5036) available from www.st.com.
STM32H7B3xI
Thermal characteristics
DS13139 - Rev 6 page 219/234
8Ordering information
Example: STM32 H 7B3 Z I T 6 Q TR
Device family
STM32 = Arm-based 32-bit microcontroller
Product type
H = High performance
Device subfamily
7B3 = STM32H7B3 with cryptographic accelerator
Pin count
R = 64 pins
V = 100 pins/balls
Q = 132 balls
Z = 144 pins
A = 169 balls
I = 176 or 176 + 25 pins/balls
N = 216 balls
L = 225 balls
Flash memory size
I = 2 Mbytes
Package
T = LQFP ECOPACK2
K = UFBGA 0.65 mm pitch ECOPACK2
I = UFBGA 0.5 mm pitch ECOPACK2
H = TFBGA ECOPACK2
Y = WLCSP ECOPACK2
Temperature range
6 = Industrial temperature range, –40 to 85 °C
Option
Q = with SMPS
Blank = without SMPS
Packing
TR = tape and reel
No character = tray or tube
For a list of available options (such as speed and package) or for further information on any aspect of this device,
contact your nearest ST sales office.
STM32H7B3xI
Ordering information
DS13139 - Rev 6 page 220/234
Revision history
Table 144. Document revision history
Date Revision Changes
17-Dec-2019 1 Initial release.
20-Apr-2020 2
Updated Octo-SPI interface in Table 1. STM32H7B3xI features and peripheral
counts.
Updated Figure 2. Power-up/power-down sequence in Section 6.1.6 Power
supply scheme.
Updated HSLV feature description in Section 3.8 General-purpose input/outputs
(GPIOs).
In Section 5 Pin descriptions: updated Table 6. Legend/abbreviations used in
the pinout table; changed SPDIFRX into SPDIFRX1 and updated allSPDIFRX1
pin names.
Updated Table 19. Voltage characteristics to add VREF+ in the list of external
main supply voltage.
Removed clock frequencies from Table 22. General operating conditions and
added new Table 23. Maximum allowed clock frequencies.
Changed condition for tRSTTEMPO in Table 29. Reset and power control block
characteristics.
Added IDD50USB in Table 32. USB regulator characteristics.
Updated Table 40. Typical current consumption in System Stop mode, added
Table 41. Typical current consumption RAM shutoff in Stop mode, added IWDG
and changed SPDIFRX into SPDIFRX1 in Table 44. Peripheral current
consumption in Run mode.
Table 58. Flash memory programming: updated table title as well as tME
description and unit.
Section 6.3.18 FMC characteristics: changed VOS level to VOS0 in the
parameter leasurement conditions and replaced sentence "the TKERCK is the
fmc_ker_ck clock period" by "the Tfmc_ker_ck is the kernel clock period" in the
whole section.
Section 6.3.19 Octo-SPI interface characteristics: added parameter
measurement conditions, updated Table 89. OCTOSPI characteristics in SDR
mode and Table 90. OCTOSPI characteristics in DTR mode (with DQS)/Octal
and Hyperbus, updated Figure 51. OctoSPI Hyperbus clock, Figure 52. OctoSPI
Hyperbus read and Figure 53. OctoSPI Hyperbus write.
Updated Figure 57. Power supply and reference decoupling (VREF+ not
connected to VDDA), note 1. and note 1..
Section 6.3.30 Digital filter for Sigma-Delta Modulators (DFSDM)
characteristics, Section 6.3.31 Camera interface (DCMI) timing
specificationsSection 6.3.33 LCD-TFT controller (LTDC) characteristics,
Section 6.3.36.2 USART interface characteristics, Section 6.3.36.3 SPI
interface characteristics, Section 6.3.36.4 I2S Interface characteristics,
Section 6.3.36.5 SAI characteristics, Section 6.3.36.7 SD/SDIO MMC card
host interface (SDMMC) characteristics, Section 6.3.36.8 USB OTG_FS
characteristics, Section 6.3.36.9 USB OTG_HS characteristics,
Section 6.3.36.10 JTAG/SWD interface characteristics: changed VOS level to
VOS0 in the parameter measurement conditions.
08-Jul-2020 3
Updated note related to ULPI interface availability on packages that do not
feature PC2 and PC3 I/Os in Table 1. STM32H7B3xI features and peripheral
counts.
Updated Table 20. Current characteristics, Table 21. Thermal characteristics and
Figure 22. Current consumption measurement scheme.
STM32H7B3xI
DS13139 - Rev 6 page 221/234
Date Revision Changes
Updated Figure 21. Power supply scheme. Added note to VREFINT in
Table 30. Embedded reference voltage.Added Table 33. Inrush current and
inrush electric charge characteristics for LDO and SMPS. Updated
Table 46. Low-power mode wakeup timings, Table 34. Typical and maximum
current consumption in Run mode, code with data processing running from ITCM,
regulator ON and Table 35. Typical and maximum current consumption in Run
mode, code with data processing running from Flash memory, cache ON.
Updated Table 68. Output timing characteristics (HSLV OFF) and
Table 69. Output timing characteristics (HSLV ON).
Updated Table 62. ESD absolute maximum ratings.
Added notes related to performance degradation at VOS1 in
Section 6.3.18 FMC characteristics, Section 6.3.19 Octo-SPI interface
characteristics, Section 6.3.32 PSSI interface characteristics,
Section 6.3.33 LCD-TFT controller (LTDC) characteristics,
Section 6.3.36.2 USART interface characteristics, Section 6.3.36.3 SPI
interface characteristics, Section 6.3.36.4 I2S Interface characteristics,
Section 6.3.36.5 SAI characteristics, Section 6.3.36.6 MDIO characteristics,
Section 6.3.36.7 SD/SDIO MMC card host interface (SDMMC) characteristics,
Section 6.3.36.9 USB OTG_HS characteristics and
Section 6.3.36.10 JTAG/SWD interface characteristics. Updated F(CLK)
measurement conditions in Table 89. OCTOSPI characteristics in SDR mode and
Table 90. OCTOSPI characteristics in DTR mode (with DQS)/Octal and
Hyperbus.
Added Figure 54. ADC conversion timing diagram.
Added Section 6.3.32 PSSI interface characteristics.
Updated Figure 66. USART timing diagram in Master mode and
Figure 67. USART timing diagram in Slave mode.
Added note related to ULPI transceivers operating at 1.8 V in
Table 124. Dynamics characteristics: USB ULPI.
21-Aug-2020 4
In Section 3.31 True random number generator (RNG), changed "random
number generator" in "true random number generator" and description updated.
In Section 5 Pin descriptions, swapped PA1 and PA2 balls in WLCSP132 ballout
schematic.
Added reference to application note AN4899 in Section 6.3.16 I/O port
characteristics.
Updated DuCyCKOUT in Table 107. DFSDM measured timing 1.62-3.6 V
Updated Figure 109. UFBGA176+25 - Outline.
16-Sep-2020 5
Updated VDDMMC separate supply pad in Section 2 Description. Changed pin
88 connection to VDD in Figure LQFP100 (STM32H7B3xI with SMPS) pinout and
Table 7. STM32H7B3xI pin/ball definition. Changed VDD_MMC_4 into VDDMMC
in Table 7. STM32H7B3xI pin/ball definition.
Updated Figure 21. Power supply scheme and Section 6.3.2 VCAP external
capacitor.
Added VBAT in Section 6.3.1 General operating conditions.
Updated High-speed external user clock generated from an external source and
Low-speed external user clock generated from an external source.
Updated Table 141. UFBGA 176+25 - Mechanical data.
28-Sep-2020 6 Updated VHSEL maximum value in Table 47. High-speed external user clock
characteristics.
STM32H7B3xI
DS13139 - Rev 6 page 222/234
Contents
1Introduction .......................................................................4
2Description ........................................................................5
3Functional overview ..............................................................12
3.1 Arm® Cortex®-M7 with FPU.....................................................12
3.2 Memory protection unit (MPU)...................................................12
3.3 Memories ....................................................................12
3.3.1 Embedded Flash memory .................................................12
3.3.2 Secure access mode.....................................................13
3.3.3 Embedded SRAM .......................................................13
3.4 Boot modes ..................................................................14
3.5 Power supply management .....................................................14
3.5.1 Power supply scheme ....................................................14
3.5.2 Power supply supervisor ..................................................15
3.5.3 Voltage regulator........................................................16
3.5.4 SMPS step-down converter................................................16
3.6 Low-power modes.............................................................16
3.7 Reset and clock controller (RCC) ................................................17
3.7.1 Clock management ......................................................17
3.7.2 System reset sources ....................................................18
3.8 General-purpose input/outputs (GPIOs)...........................................18
3.9 Bus-interconnect matrix ........................................................19
3.10 DMA controllers...............................................................20
3.11 Chrom-ART Accelerator (DMA2D) ...............................................20
3.12 Chrom-GRC™ (GFXMMU) .....................................................20
3.13 Nested vectored interrupt controller (NVIC)........................................20
3.14 Extended interrupt and event controller (EXTI) .....................................21
3.15 Cyclic redundancy check calculation unit (CRC)....................................21
3.16 Flexible memory controller (FMC)................................................21
3.17 Octo-SPI memory interface (OCTOSPI)...........................................21
STM32H7B3xI
Contents
DS13139 - Rev 6 page 223/234
3.18 Analog-to-digital converters (ADCs) ..............................................22
3.19 Analog temperature sensor .....................................................22
3.20 Digital temperature sensor (DTS) ................................................22
3.21 VBAT operation................................................................22
3.22 Digital-to-analog converters (DAC) ...............................................23
3.23 Voltage reference buffer (VREFBUF) .............................................23
3.24 Ultra-low-power comparators (COMP) ............................................23
3.25 Operational amplifiers (OPAMP) .................................................23
3.26 Digital filter for sigma-delta modulators (DFSDM)...................................24
3.27 Digital camera interface (DCMI) .................................................25
3.28 Parallel synchronous slave interface (PSSI) .......................................25
3.29 LCD-TFT display controller .....................................................25
3.30 JPEG codec (JPEG) ...........................................................26
3.31 Random number generator (RNG) ...............................................26
3.32 Cryptographic acceleration (CRYPT and HASH) ...................................26
3.33 On-the-fly decryption engine (OTFDEC) ..........................................27
3.34 Timers and watchdogs .........................................................27
3.34.1 Advanced-control timers (TIM1, TIM8) .......................................28
3.34.2 General-purpose timers (TIMx) .............................................28
3.34.3 Basic timers (TIM6 and TIM7) ..............................................29
3.34.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3) .................................29
3.34.5 Independent watchdog ...................................................29
3.34.6 Window watchdog.......................................................29
3.34.7 SysTick timer ..........................................................29
3.35 Real-time clock (RTC) .........................................................30
3.36 Tamper and backup registers (TAMP) ............................................30
3.37 Inter-integrated circuit interface (I2C) .............................................30
3.38 Universal synchronous/asynchronous receiver transmitter (USART)...................31
3.39 Low-power universal asynchronous receiver transmitter (LPUART) ...................32
3.40 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) ................32
3.41 Serial audio interfaces (SAI) ....................................................32
STM32H7B3xI
Contents
DS13139 - Rev 6 page 224/234
3.42 SPDIFRX receiver interface (SPDIFRX) ..........................................33
3.43 Single wire protocol master interface (SWPMI).....................................33
3.44 Management data input/output (MDIO) slaves .....................................33
3.45 SD/SDIO/MMC card host interfaces (SDMMC).....................................33
3.46 Controller area network (FDCAN1, FDCAN2) ......................................34
3.47 Universal serial bus on-the-go high-speed (OTG_HS) ...............................34
3.48 High-definition multimedia interface (HDMI) - consumer electronics control (CEC) .......34
3.49 Debug infrastructure ...........................................................35
4Memory mapping .................................................................36
5Pin descriptions ..................................................................37
6Electrical characteristics..........................................................80
6.1 Parameter conditions ..........................................................80
6.1.1 Minimum and maximum values.............................................80
6.1.2 Typical values ..........................................................80
6.1.3 Typical curves ..........................................................80
6.1.4 Loading capacitor .......................................................80
6.1.5 Pin input voltage ........................................................80
6.1.6 Power supply scheme....................................................81
6.1.7 Current consumption measurement .........................................82
6.2 Absolute maximum ratings......................................................82
6.3 Operating conditions...........................................................84
6.3.1 General operating conditions ..............................................84
6.3.2 VCAP external capacitor ..................................................87
6.3.3 SMPS step-down converter................................................87
6.3.4 Operating conditions at power-up / power-down ................................91
6.3.5 Embedded reset and power control block characteristics .........................92
6.3.6 Embedded reference voltage ..............................................93
6.3.7 Supply current characteristics ..............................................94
6.3.8 Wakeup time from low-power modes .......................................106
6.3.9 External clock source characteristics .......................................107
6.3.10 Internal clock source characteristics ........................................ 111
STM32H7B3xI
Contents
DS13139 - Rev 6 page 225/234
6.3.11 PLL characteristics .....................................................113
6.3.12 Memory characteristics ..................................................115
6.3.13 EMC characteristics ....................................................116
6.3.14 Absolute maximum ratings (electrical sensitivity) ..............................117
6.3.15 I/O current injection characteristics .........................................118
6.3.16 I/O port characteristics ..................................................118
6.3.17 NRST pin characteristics.................................................123
6.3.18 FMC characteristics ....................................................124
6.3.19 Octo-SPI interface characteristics ..........................................142
6.3.20 Delay block (DLYB) characteristics .........................................146
6.3.21 16-bit ADC characteristics................................................146
6.3.22 DAC characteristics.....................................................154
6.3.23 Voltage reference buffer characteristics .....................................157
6.3.24 Temperature sensor characteristics.........................................158
6.3.25 Digital temperature sensor characteristics....................................159
6.3.26 Temperature and VBAT monitoring .........................................159
6.3.27 Voltage booster for analog switch ..........................................160
6.3.28 Comparator characteristics ...............................................160
6.3.29 Operational amplifier characteristics ........................................161
6.3.30 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics..................163
6.3.31 Camera interface (DCMI) timing specifications ................................165
6.3.32 PSSI interface characteristics .............................................167
6.3.33 LCD-TFT controller (LTDC) characteristics ...................................169
6.3.34 Timer characteristics ....................................................170
6.3.35 Low-power timer characteristics ...........................................171
6.3.36 Communication interfaces................................................171
7Package information............................................................ 187
7.1 LQFP64 package information ..................................................188
7.1.1 Device marking for LQFP64 ..............................................189
7.2 LQFP100 package information .................................................191
7.2.1 LQFP100 package information ............................................193
7.3 TFBGA100 package information ................................................194
STM32H7B3xI
Contents
DS13139 - Rev 6 page 226/234
7.3.1 TFBGA100 package information ...........................................196
7.4 WLCSP132 package information ...............................................197
7.4.1 Device marking for WLCSP132............................................198
7.5 LQFP144 package information .................................................200
7.5.1 LQFP144 package information ............................................202
7.6 LQFP176 package information .................................................203
7.6.1 Device marking for LQFP176 .............................................204
7.7 TFBGA216 package information ................................................206
7.7.1 Device marking for TFBGA216 ............................................207
7.8 TFBGA225 package information ................................................209
7.8.1 Device marking for TFBGA225 ............................................211
7.9 UFBGA169 package information................................................212
7.9.1 Device marking for UFBGA169 ............................................213
7.10 UFBGA176+25 package information ............................................215
7.10.1 Device marking for UFBGA176+25 .........................................216
7.11 Thermal characteristics .......................................................217
7.11.1 Reference documents ...................................................219
8Ordering information ........................................................... 220
Revision history ..................................................................... 221
Contents ............................................................................ 223
List of tables ........................................................................ 228
List of figures........................................................................ 231
STM32H7B3xI
Contents
DS13139 - Rev 6 page 227/234
List of tables
Table 1. STM32H7B3xI features and peripheral counts ................................................7
Table 2. System vs domain low-power mode ...................................................... 17
Table 3. Overview of low-power mode monitoring pins ............................................... 17
Table 4. Timer feature comparison ............................................................. 28
Table 5. USART features ...................................................................31
Table 6. Legend/abbreviations used in the pinout table ...............................................49
Table 7. STM32H7B3xI pin/ball definition ........................................................ 50
Table 8. Port A alternate functions .............................................................70
Table 9. Port B alternate functions .............................................................71
Table 10. Port C alternate functions .............................................................72
Table 11. Port D alternate functions .............................................................73
Table 12. Port E alternate functions ............................................................. 74
Table 13. Port F alternate functions .............................................................75
Table 14. Port G alternate functions .............................................................76
Table 15. Port H alternate functions .............................................................77
Table 16. Port I alternate functions .............................................................. 78
Table 17. Port J alternate functions ............................................................. 79
Table 18. Port K alternate functions ............................................................. 79
Table 19. Voltage characteristics ............................................................... 82
Table 20. Current characteristics ............................................................... 83
Table 21. Thermal characteristics...............................................................83
Table 22. General operating conditions ...........................................................84
Table 23. Maximum allowed clock frequencies......................................................85
Table 24. Supply voltage and maximum frequency configuration ......................................... 86
Table 25. VCAP operating conditions ............................................................ 87
Table 26. Characteristics of SMPS step-down converter external components ................................ 87
Table 27. SMPS step-down converter characteristics for external usage .................................... 88
Table 28. Operating conditions at power-up / power-down (regulator ON) ................................... 92
Table 29. Reset and power control block characteristics ...............................................92
Table 30. Embedded reference voltage........................................................... 93
Table 31. Internal reference voltage calibration values ................................................ 94
Table 32. USB regulator characteristics ..........................................................94
Table 33. Inrush current and inrush electric charge characteristics for LDO and SMPS .......................... 95
Table 34. Typical and maximum current consumption in Run mode, code with data processing running from ITCM, regulator
ON.............................................................................96
Table 35. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory,
cache ON ........................................................................97
Table 36. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory,
cache OFF ....................................................................... 97
Table 37. Typical consumption in Run mode and corresponding performance versus code position ................. 98
Table 38. Typical current consumption in Autonomous mode ............................................ 98
Table 39. Typical current consumption in Sleep mode, regulator ON....................................... 99
Table 40. Typical current consumption in System Stop mode............................................ 99
Table 41. Typical current consumption RAM shutoff in Stop mode ....................................... 100
Table 42. Typical and maximum current consumption in Standby mode ................................... 100
Table 43. Typical and maximum current consumption in VBAT mode ...................................... 101
Table 44. Peripheral current consumption in Run mode .............................................. 102
Table 45. Peripheral current consumption in Stop, Standby and VBAT mode ................................ 106
Table 46. Low-power mode wakeup timings ...................................................... 106
Table 47. High-speed external user clock characteristics.............................................. 107
Table 48. Low-speed external user clock characteristics .............................................. 108
Table 49. 4-50 MHz HSE oscillator characteristics .................................................. 109
STM32H7B3xI
List of tables
DS13139 - Rev 6 page 228/234
Table 50. Low-speed external user clock characteristics ...............................................110
Table 51. HSI48 oscillator characteristics .........................................................111
Table 52. HSI oscillator characteristics ...........................................................112
Table 53. CSI oscillator characteristics ...........................................................112
Table 54. LSI oscillator characteristics ...........................................................113
Table 55. PLL characteristics (wide VCO frequency range) .............................................113
Table 56. PLL characteristics (medium VCO frequency range)...........................................114
Table 57. Flash memory characteristics ..........................................................115
Table 58. Flash memory programming ...........................................................115
Table 59. Flash memory endurance and data retention ................................................115
Table 60. EMS characteristics .................................................................116
Table 61. EMI characteristics..................................................................117
Table 62. ESD absolute maximum ratings .........................................................117
Table 63. Electrical sensitivities ................................................................117
Table 64. I/O current injection susceptibility ........................................................118
Table 65. I/O static characteristics ..............................................................118
Table 66. Output voltage characteristics for all I/Os except PC13, PC14, PC15 and PI8 ........................ 120
Table 67. Output voltage characteristics for PC13, PC14, PC15 and PI8 ................................... 121
Table 68. Output timing characteristics (HSLV OFF) ................................................. 121
Table 69. Output timing characteristics (HSLV ON).................................................. 123
Table 70. NRST pin characteristics............................................................. 124
Table 71. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings ................................ 125
Table 72. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings........................... 126
Table 73. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings ................................ 127
Table 74. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings .......................... 128
Table 75. Asynchronous multiplexed PSRAM/NOR read timings ........................................ 129
Table 76. Asynchronous multiplexed PSRAM/NOR read - NWAIT timings .................................. 129
Table 77. Asynchronous multiplexed PSRAM/NOR write timings ........................................ 129
Table 78. Asynchronous multiplexed PSRAM/NOR write - NWAIT timings.................................. 130
Table 79. Synchronous multiplexed NOR/PSRAM read timings ......................................... 131
Table 80. Synchronous multiplexed PSRAM write timings ............................................. 132
Table 81. Synchronous non-multiplexed NOR/PSRAM read timings ...................................... 134
Table 82. Synchronous non-multiplexed PSRAM write timings .......................................... 135
Table 83. Switching characteristics for NAND Flash memory read cycles .................................. 138
Table 84. Switching characteristics for NAND Flash write cycles ........................................ 139
Table 85. SDRAM read timings ............................................................... 140
Table 86. LPSDRAM read timings ............................................................. 140
Table 87. SDRAM Write timings............................................................... 141
Table 88. LPSDR SDRAM Write timings ......................................................... 142
Table 89. OCTOSPI characteristics in SDR mode .................................................. 142
Table 90. OCTOSPI characteristics in DTR mode (with DQS)/Octal and Hyperbus ............................ 143
Table 91. Delay Block characteristics ........................................................... 146
Table 92. ADC characteristics ................................................................ 146
Table 93. Minimum sampling time vs RAIN........................................................ 149
Table 94. ADC accuracy .................................................................... 151
Table 95. DAC characteristics ................................................................ 154
Table 96. DAC accuracy .................................................................... 156
Table 97. VREFBUF characteristics ............................................................ 157
Table 98. Analog temperature sensor characteristics ................................................ 158
Table 99. Analog temperature sensor calibration values .............................................. 159
Table 100. Digital temperature sensor characteristics ................................................. 159
Table 101. VBAT monitoring characteristics ........................................................ 159
Table 102. VBAT charging characteristics ......................................................... 160
Table 103. Temperature monitoring characteristics................................................... 160
STM32H7B3xI
List of tables
DS13139 - Rev 6 page 229/234
Table 104. Voltage booster for analog switch characteristics ............................................ 160
Table 105. COMP characteristics............................................................... 160
Table 106. Operational amplifier characteristics ..................................................... 161
Table 107. DFSDM measured timing 1.62-3.6 V .................................................... 163
Table 108. DCMI characteristics ............................................................... 166
Table 109. PSSI transmit characteristics.......................................................... 167
Table 110. PSSI receive characteristics .......................................................... 167
Table 111. LTDC characteristics ............................................................... 169
Table 112. TIMx characteristics ................................................................ 171
Table 113. LPTIMx characteristics .............................................................. 171
Table 114. Minimum i2c_ker_ck frequency in all I2C modes ............................................ 171
Table 115. I2C analog filter characteristics ........................................................ 172
Table 116. USART characteristics .............................................................. 172
Table 117. SPI dynamic characteristics........................................................... 174
Table 118. I2S dynamic characteristics ........................................................... 177
Table 119. SAI characteristics ................................................................. 179
Table 120. MDIO Slave timing parameters ........................................................ 181
Table 121. Dynamics characteristics: SDMMC characteristics, VDD=2.7 to 3.6 V .............................. 181
Table 122. Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V .............................. 182
Table 123. Dynamics characteristics: USB OTG_FS.................................................. 184
Table 124. Dynamics characteristics: USB ULPI .................................................... 184
Table 125. Dynamics JTAG characteristics ........................................................ 185
Table 126. Dynamics SWD characteristics ........................................................ 186
Table 127. LQFP64 pin - Mechanical data......................................................... 189
Table 128. LQFP100 - Mechanical data .......................................................... 192
Table 129. TFBGA100 - Mechanical data ......................................................... 194
Table 130. TFBGA100 - Recommended PCB design rules (0.8 mm pitch)................................... 195
Table 131. WLCSP132 - Mechanical data ......................................................... 197
Table 132. WLCSP132 - Recommended PCB design rules ............................................. 198
Table 133. LQFP144 - Mechanical data .......................................................... 201
Table 134. LQFP176 - Mechanical data .......................................................... 203
Table 135. TFBGA216 - Mechanical data ......................................................... 206
Table 136. TFBGA216 - Recommended PCB design rules (0.8 mm pitch)................................... 207
Table 137. TFBGA225 - Mechanical data ......................................................... 209
Table 138. TFBGA225 - Recommended PCB design rules (0.8 mm pitch BGA) .............................. 210
Table 139. UFBGA169 - Mechanical data ......................................................... 212
Table 140. UFBGA169 - Recommended PCB design rules (0.5 mm pitch BGA)............................... 213
Table 141. UFBGA 176+25 - Mechanical data ...................................................... 215
Table 142. UFBGA176+25 - Recommended PCB design rules (0.65 mm pitch) ............................... 216
Table 143. Thermal characteristics.............................................................. 217
Table 144. Document revision history ............................................................ 221
STM32H7B3xI
List of tables
DS13139 - Rev 6 page 230/234
List of figures
Figure 1. STM32H7B3xI block diagram ......................................................... 11
Figure 2. Power-up/power-down sequence ...................................................... 15
Figure 3. STM32H7B3xI bus matrix ........................................................... 19
Figure 4. LQFP64 (STM32H7B3xI without SMPS) pinout.............................................37
Figure 5. LQFP100 (STM32H7B3xI with SMPS) pinout ..............................................38
Figure 6. LQFP100 (STM32H7B3xI without SMPS) pinout ............................................39
Figure 7. TFBGA100 (STM32H7B3xI with SMPS) pinout ............................................. 40
Figure 8. TFBGA100 (STM32H7B3xI without SMPS) pinout........................................... 40
Figure 9. WLCSP132 (STM32H7B3xI with SMPS) ballout ............................................ 41
Figure 10. LQFP144 (STM32H7B3xI with SMPS) pinout ..............................................42
Figure 11. LQFP144 (STM32H7B3xI without SMPS) pinout............................................43
Figure 12. LQFP176 (STM32H7B3xI with SMPS) pinout ..............................................44
Figure 13. LQFP176 (STM32H7B3xI without SMPS) pinout............................................45
Figure 14. TFBGA216 (STM32H7B3xI without SMPS) ballout ..........................................46
Figure 15. TFBGA225 (STM32H7B3xI with SMPS) ballout ............................................ 47
Figure 16. UFBGA169 (STM32H7B3xI with SMPS) ballout ............................................ 47
Figure 17. UFBGA176+25 (STM32H7B3xI with SMPS) ballout.......................................... 48
Figure 18. UFBGA176+25 (STM32H7B3xI without SMPS) ballout ....................................... 49
Figure 19. Pin loading conditions .............................................................. 80
Figure 20. Pin input voltage .................................................................. 80
Figure 21. Power supply scheme .............................................................. 81
Figure 22. Current consumption measurement scheme............................................... 82
Figure 23. External capacitor CEXT ............................................................. 87
Figure 24. SMPS efficicency vs load current in Run, Sleep and Stop mode with SVOS3 MR mode, TJ = 30 °C......... 89
Figure 25. SMPS efficiency vs load current in Run, Sleep and Stop mode with SVOS3 MR mode, TJ = 130 °C ........ 89
Figure 26. SMPS efficiency vs load current in Stop and DStop modes (SVOS3 LP mode, SVOS4, SVOS5), TJ = 30 °C .. 90
Figure 27. SMPS efficiency vs load current in Stop and DStop modes (SVOS3 LP mode, SVOS4, SVOS5), TJ = 130 °C . 90
Figure 28. SMPS efficiency vs load current in Stop and DStop2 modes (SVOS3 LP mode, SVOS4, SVOS5), TJ = 30 °C . 91
Figure 29. SMPS efficiency vs load current in Stop and DStop2 modes (SVOS3 LP mode, SVOS4, SVOS5), TJ = 130 °C. 91
Figure 30. High-speed external clock source AC timing diagram........................................ 108
Figure 31. Low-speed external clock source AC timing diagram ........................................ 109
Figure 32. Typical application with an 8 MHz crystal .................................................110
Figure 33. Typical application with a 32.768 kHz crystal ..............................................111
Figure 34. VIL/VIH for all I/Os except BOOT0 ......................................................119
Figure 35. Recommended NRST pin protection ................................................... 124
Figure 36. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms ............................ 125
Figure 37. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms ............................ 127
Figure 38. Asynchronous multiplexed PSRAM/NOR read waveforms .................................... 128
Figure 39. Synchronous multiplexed NOR/PSRAM read timings........................................ 131
Figure 40. Synchronous multiplexed PSRAM write timings ........................................... 132
Figure 41. Synchronous non-multiplexed NOR/PSRAM read timings .................................... 134
Figure 42. Synchronous non-multiplexed PSRAM write timings ........................................ 135
Figure 43. NAND controller waveforms for read access.............................................. 137
Figure 44. NAND controller waveforms for write access ............................................. 137
Figure 45. NAND controller waveforms for common memory read access ................................. 138
Figure 46. NAND controller waveforms for common memory write access ................................. 138
Figure 47. SDRAM read access waveforms (CL = 1) ............................................... 139
Figure 48. SDRAM write access waveforms ..................................................... 141
Figure 49. OctoSPI timing diagram - SDR mode................................................... 143
Figure 50. OctoSPI timing diagram - DTR mode................................................... 144
Figure 51. OctoSPI Hyperbus clock ........................................................... 145
STM32H7B3xI
List of figures
DS13139 - Rev 6 page 231/234
Figure 52. OctoSPI Hyperbus read ............................................................ 145
Figure 53. OctoSPI Hyperbus write............................................................ 146
Figure 54. ADC conversion timing diagram ...................................................... 151
Figure 55. ADC accuracy characteristics (12-bit resolution) ........................................... 152
Figure 56. Typical connection diagram using the ADC............................................... 153
Figure 57. Power supply and reference decoupling (VREF+ not connected to VDDA)........................... 153
Figure 58. Power supply and reference decoupling (VREF+ connected to VDDA)............................. 154
Figure 59. 12-bit buffered /non-buffered DAC..................................................... 157
Figure 60. Channel transceiver timing diagrams ................................................... 165
Figure 61. DCMI timing diagram.............................................................. 166
Figure 62. PSSI timing diagram in Transmit mode ................................................. 168
Figure 63. PSSI timing diagram in Receive mode .................................................. 168
Figure 64. LCD-TFT horizontal timing diagram.................................................... 170
Figure 65. LCD-TFT vertical timing diagram...................................................... 170
Figure 66. USART timing diagram in Master mode ................................................. 173
Figure 67. USART timing diagram in Slave mode .................................................. 174
Figure 68. SPI timing diagram - slave mode and CPHA = 0 ........................................... 175
Figure 69. SPI timing diagram - slave mode and CPHA = 1(1) ......................................... 176
Figure 70. SPI timing diagram - master mode(1) ................................................... 176
Figure 71. I2S slave timing diagram (Philips protocol)(1) ............................................. 178
Figure 72. I2S master timing diagram (Philips protocol)(1) ............................................ 178
Figure 73. SAI master timing waveforms ........................................................ 180
Figure 74. SAI slave timing waveforms ......................................................... 180
Figure 75. MDIO Slave timing diagram ......................................................... 181
Figure 76. SDIO high-speed mode ............................................................ 183
Figure 77. SD default mode................................................................. 183
Figure 78. DDR mode..................................................................... 183
Figure 79. ULPI timing diagram .............................................................. 185
Figure 80. JTAG timing diagram.............................................................. 186
Figure 81. SWD timing diagram .............................................................. 186
Figure 82. LQFP64 - Outline ................................................................ 188
Figure 83. LQFP64 - Recommended footprint .................................................... 189
Figure 84. LQFP64 marking example (package top view) ............................................ 190
Figure 85. LQFP100 - Outline ............................................................... 191
Figure 86. LQFP100 - Recommended footprint ................................................... 192
Figure 87. LQFP100 marking example (package top view) ........................................... 193
Figure 88. TFBGA100 - Outline .............................................................. 194
Figure 89. TFBGA100 - Recommended footprint .................................................. 195
Figure 90. TFBGA100 marking example (package top view) .......................................... 196
Figure 91. WLCSP132 - Outline .............................................................. 197
Figure 92. WLCSP132 - Recommended footprint .................................................. 198
Figure 93. WLCSP132 marking example (package top view) .......................................... 199
Figure 94. LQFP144 - Outline ............................................................... 200
Figure 95. LQFP144 - Recommended footprint ................................................... 201
Figure 96. LQFP144 marking example (package top view) ........................................... 202
Figure 97. LQFP176 - Outline ............................................................... 203
Figure 98. LQFP176 - Recommended footprint ................................................... 204
Figure 99. LQFP176 marking example (package top view) ........................................... 205
Figure 100. TFBGA216 - Outline .............................................................. 206
Figure 101. TFBGA216 - Recommended footprint .................................................. 207
Figure 102. TFBGA216 marking example (package top view) .......................................... 208
Figure 103. TFBGA225 - Outline .............................................................. 209
Figure 104. TFBGA225 - Recommended footprint .................................................. 210
STM32H7B3xI
List of figures
DS13139 - Rev 6 page 232/234
Figure 105. TFBGA225 marking example (package top view) ...........................................211
Figure 106. UFBGA169 - Outline .............................................................. 212
Figure 107. UFBGA169 - Recommended footprint .................................................. 213
Figure 108. UFBGA169 marking example (package top view) .......................................... 214
Figure 109. UFBGA176+25 - Outline ........................................................... 215
Figure 110. UFBGA176+25 - Recommended footprint ............................................... 216
Figure 111. UFBGA176+25 marking example (package top view) ....................................... 217
STM32H7B3xI
List of figures
DS13139 - Rev 6 page 233/234
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2020 STMicroelectronics – All rights reserved
STM32H7B3xI
DS13139 - Rev 6 page 234/234