Publication Date : September 2012
1
< IGBT MODULES >
CM150TX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Collector current IC .............….......................… 150A
Collector-emitter voltage VCES ......................… 1200V
Maximum junction temperature Tjmax .............. 175°C
Flat base Type
Copper base plate (non-plating)
Tin plating pin terminals
RoHS Directive compliant
sixpack (3φ Inverter) Recognized under UL1557, File E323585
APPLICATION
AC Motor Control, Motion/Servo Control, Power supply, etc.
OUTLINE DRAWING & INTERNAL CONNECTION Dimension in mm
TERMINAL
t=0.8
SECTION A
INTERNAL CONNECTION
Tolerance otherwise specified
Division of Dimension Tolerance
0.5 to 3 ±0.2
over 3 to 6 ±0.3
over 6 to 30 ±0.5
over 30 to 120 ±0.8
over 120 to 400 ±1.2
P
(54~56)
N(59~61)
GUP(1)
EsUP(2)
U(48~50)
GUN(5)
TH1(31)
TH2(32)
GVP(9)
Es VP(10 )
V(42~44)
GVN(13)
GWP(17)
EsWP(18)
W(36~38)
GW N (21)
EsUN(6) EsVN(14) EsWN( 22)
NTC
P1(28~30)
N1(23~25)
Caution: Each (three) pin terminal of P/N/P1/N1/U/V/W is connected in the module,
but should use all each three pins for the external wiring.
The tolerance of size between
terminals is assumed to be ±0.4.
< IGBT MODULES >
CM150TX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : September 2012
2
ABSOLUTE MAXIMUM RATINGS (Tj=25 °C, unless otherwise specified)
INVERTER PART IGBT/FWDi
Symbol Item Conditions Rating Unit
VCES Collector-emitter voltage G-E short-circuited 1200 V
VGES Gate-emitter voltage C-E short-circuited ± 20 V
IC DC, TC=120 °C (Note2, 4) 150
ICRM Collector current Pulse, Repetitive (Note3) 300
A
Ptot Total power dissipation TC=25 °C (Note2, 4) 1150 W
IE (Note1) (Note2) 150
IERM (Note1) Emitter current Pulse, Repetitive (Note3) 300
A
MODULE
Symbol Item Conditions Rating Unit
Visol Isolation voltage Terminals to base plate, RMS, f=60 Hz, AC 1 min 2500 V
Tjmax Maximum junction temperature Instantaneous event (overload) 175 °C
TCmax Maximum case temperature (Note4) 125 °C
Tjop Operating junction temperature Continuous operation (under switching) -40 ~ +150
Tstg Storage temperature - -40 ~ +125 °C
ELECTRICAL CHARACTERISTICS (T j=25 °C, unless otherwise specified)
INVERTER PART IGBT/FWDi
Limits
Symbol Item Conditions
Min. Typ. Max.
Unit
ICES Collector-emitter cut-off current VCE=VCES, G-E short-circuited - - 1.0 mA
IGES Gate-emitter leakage current VGE=VGES, C-E short-circuited - - 0.5 μA
VGE(th) Gate-emitter threshold voltage IC=15 mA, VCE=10 V 5.4 6.0 6.6 V
IC=150 A (Note5) , T j=25 °C - 1.80 2.25
VGE=15 V, Tj=125 °C - 2.00 -
(Terminal) Tj=150 °C - 2.05 -
V
IC=150 A (Note5) , T j=25 °C - 1.70 2.15
VGE=15 V, Tj=125 °C - 1.90 -
VCEsat Collector-emitter saturation voltage
(Chip) T j=150 °C - 1.95 -
V
Cies Input capacitance - - 15
Coes Output capacitance - - 3.0
Cres Reverse transfer capacitance
VCE=10 V, G-E short-circuited
- - 0.25
nF
QG Gate charge VCC=600 V, IC=150 A, VGE=15 V - 350 - nC
td(on) Turn-on delay time - - 800
tr Rise time VCC=600 V, IC=150 A, VGE=±15 V, - - 200
td(off) Turn-off delay time - - 600
tf Fall time RG=0 , Inductive load - - 300
ns
IE=150 A (Note5) , T j=25 °C - 1.80 2.25
G-E short-circuited, T j=125 °C - 1.80 -
(Terminal) Tj=150 °C - 1.80 -
V
IE=150 A (Note5) , T j=25 °C - 1.70 2.15
G-E short-circuited, T j=125 °C - 1.70 -
VEC (Note1) Emitter-collector voltage
(Chip) T j=150 °C - 1.70 -
V
trr (Note1) Reverse recovery time VCC=600 V, IE=150 A, VGE=±15 V, - - 300 ns
Qrr (Note1) Reverse recovery charge RG=0 , Inductive load - 8.0 - μC
Eon Turn-on switching energy per pulse VCC=600 V, IC=IE=150 A, - 24.2 -
Eoff Turn-off switching energy per pulse VGE=±15 V, RG=0 , T j=150 °C, - 16 - mJ
Err (Note1) Reverse recovery energy per pulse Inductive load - 12.2 - mJ
Main terminals-chip, per switch,
RCC'+EE' Internal lead resistance TC=25 °C (Note4) - - 1.8 m
rg Internal gate resistance Per switch - 13 -
< IGBT MODULES >
CM150TX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : September 2012
3
ELECTRICAL CHARACTERISTICS (cont; Tj=25 °C, unless otherwise specified)
NTC THERMISTOR PART
Limits
Symbol Item Conditions
Min. Typ. Max.
Unit
R25 Zero-power resistance TC=25 °C (Note4) 4.85 5.00 5.15 k
R/R Deviation of resistance R100=493 , TC=100 °C (Note4) -7.3 - +7.8 %
B(25/50) B-constant Approximate by equation
(Note7) - 3375 - K
P25 Power dissipation TC=25 °C (Note4) - - 10 mW
THERMAL RESISTANCE CHARACTERISTICS
Limits
Symbol Item Conditions
Min. Typ. Max.
Unit
Rth(j-c)Q Junction to case, per Inverter IGBT - - 0.13
Rth(j-c)D Thermal resistance (Note4) Junction to case, per Inverter FWDi - - 0.23 K/W
Case to heat sink, per 1 module,
Rth(c-s) Contact thermal resistance (Note4) Thermal grease applied (Note7) - 15 - K/kW
MECHANICAL CHARACTERISTICS
Limits
Symbol Item Conditions
Min. Typ. Max.
Unit
Ms Mounting torque Mounting to heat sink M 5 screw 2.5 3.0 3.5 N·m
Terminal to terminal 10.28 - -
ds Creepage distance Terminal to base plate 14.27 - - mm
Terminal to terminal 10.28 - -
da Clearance Terminal to base plate 12.33 - - mm
m Weight - - 300 - g
ec Flatness of base plate On the centerline X, Y (Note8) ±0 - +100 μm
Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi).
2. Junction temperature (T j) should not increase beyond Tjmax rating.
3. Pulse width and repetition rate should be such that the device junction temperature (T j) dose not exceed T jmax rating.
4. Case temperature (TC) and heat sink temperature (T s) are defined on the each surface (mounting side) of base plate and heat sink
just under the chips. Refer to the figure of chip location.
5. Pulse width and repetition rate should be such as to cause negligible temperature rise.
Refer to the figure of test circuit.
6. )
TT
/()
R
R
ln(B )/( 502550
25
5025 11 ,
R25: resistance at absolute temperature T25 [K]; T25=25 [°C]+273.15=298.15 [K]
R50: resistance at absolute temperature T50 [K]; T50=50 [°C]+273.15=323.15 [K]
7. Typical value is measured by using thermally conductive grease of λ=0.9 W/(m·K).
8. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure.
Y
X
+:Convex
-:Concave
+:Convex
-:Concave
mounting side
mounting side
mounting side
9. Use the following screws when mounting the printed circuit board (PCB) on the stand offs.
"ST2.6×10 or ST2.6×12 self tapping screw"
The length of the screw depends on the thickness of the PCB.
< IGBT MODULES >
CM150TX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : September 2012
4
RECOMMENDED OPERATING CONDITIONS
Limits
Symbol Item Conditions
Min. Typ. Max.
Unit
VCC (DC) Supply voltage Applied across P-N terminals - 600 850 V
VGEon Gate (-emitter drive) voltage Applied across
G*P-Es*P/G*N-Es*N (*=U, V, W) terminals 13.5 15.0 16.5 V
RG External gate resistance Per switch 0 - 30
CHIP LOCATION (Top view) Dimension in mm, tolerance: ±1 mm
Tr*P/Tr*N: IGBT, Di*P/Di*N: FWDi (*=U/V/W), Th: NTC thermistor
TEST CIRCUIT AND WAVEFORMS
t
tf
tr
td(o n)
iC
10%
90 %
90 %
vGE
VCC
RG
-VGE
+VGE
-VGE
Load
0 V
0 A
+
0
vCE
vGE
0 V
td(off)
t
iE
iC
P
N
*
G*P
Es*P
G*N
Es*N
*:U, V, W P1
N1
Irr
Qrr=0.5×Irr×trr
0.5×Irr
t
trr
iE
0 A
IE
Switching characteristics test circuit and waveforms trr, Qrr test waveform
0.1×I
CM
I
CM
V
CC
v
CE
i
C
t
0
t
i
0.1×V
CC
0.1×V
CC
V
CC
I
CM
v
CE
i
C
t0 0.02×I
CM
t
i
IEM
vEC
iE
t0 V
ti
t
VCC
0 A
IGBT Turn-on switching energy IGBT Turn-off switching energy FWDi Reverse recovery energy
Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)
< IGBT MODULES >
CM150TX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : September 2012
5
TEST CIRCUIT
IC
N
EsUN
GUN
EsUP
GUP
V
Short-
circuited
P
VGE=15 V
U
N1
P1
IC
N
EsVN
GVN
EsVP
GVP
V
Short-
circuited
P
VGE=15 V
V
N1
P1
IC
N
EsW
N
GWN
EsWP
GWP
V
Short-
circuited
P
VGE=15 V
W
N1
P1
V
IC
59~61
6
5
2
1
Short-
circuited
54~56
VGE=15 V
48~50
23~25
2
8
~30
V
IC
59~61
14
13
10
9
Short-
circuited
54~56
VGE=15 V
42~44
23~25
2
8
~30
V
IC
59~61
22
21
18
17
Short-
circ uit ed
54~56
VGE=15 V
36~38
23~25
2
8
~30
Gate-emitter
short-circuited
GVP-EsVP, GVN-EsVP,
GWP-EsWN, GWN-EsWN
Gate-emitter
short-circuited
GUP-EsUP, GUN-EsUN,
GWP-EsWP, GWN-EsWN
Gate-emitter
short-circuited
GUP-EsUP, GUN-EsUN,
GVP-EsVP, GVN-EsVN
UP / UN IGBT VP / VN IGBT WP / WN IGBT
VCEsat test circuit
IE
59~61
6
5
2
1
V
Short-
circuited
54~56
48~50
23~25
28~30
Short-
circuited
IE
59~61
14
13
10
9
V
Short-
circuited
54~56
42~44
23~25
28~30
Short-
circuited
IE
59~61
22
21
18
17
V
Short-
ci rcuit ed
54~56
36~38
23~25
28~30
Short-
ci rcuit ed
V
IE
N
EsUN
GUN
EsUP
GU
P
Short-
circuited
P
U
N1
P1
Short-
circuited
V
IE
N
EsVN
GVN
EsVP
GVP
Short-
circuited
P
V
N1
P1
Short-
circuited
V
IE
N
EsWN
GWN
EsWP
GW
P
Short-
circ uit ed
P
W
N1
P1
Short-
circ uit ed
Gate-emitter
short-circuited
GVP-EsVP, GVN-EsVP,
GWP-EsWN, GWN-EsWN
Gate-emitter
short-circuited
GUP-EsUP, GUN-EsUN,
GWP-EsWP, GWN-EsWN
Gate-emitter
short-circuited
GUP-EsUP, GUN-EsUN,
GVP-EsVP, GVN-EsVN
UP / UN FWDi VP / VN FWDi WP / WN FWDi
VEC test circuit
< IGBT MODULES >
CM150TX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : September 2012
6
PERFORMANCE CURVES
INVERTER PART
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER SATURATION VOLTAGE
CHARACTERISTICS
(TYPICAL)
Tj=25 °C (Chip) VGE=15 V (Chip)
COLLECTOR CURRENT IC (A)
0
50
100
150
200
250
300
0246810
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (V)
0
0.5
1
1.5
2
2.5
3
3.5
0 50 100 150 200 250 300
COLLECTOR-EMITTER VOLTAGE VCE (V) COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION VOLTAGE
CHARACTERISTICS
(TYPICAL)
FREE WHEELING DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
Tj=25 °C (Chip) G-E short-circuited (Chip)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (V)
0
2
4
6
8
10
6 8 10 12 14 16 18 20
EMITTER CURRENT IE (A)
10
100
1000
0123
GATE-EMITTER VOLTAGE VGE (V) EMITTER-COLLECTOR VOLTAGE VEC (V)
Tj=150 °C
Tj=125 °C
Tj=25 °C
Tj=125 °C
Tj=25 °C
IC=300 A
IC=150 A
IC=60 A
VGE=20 V
12 V
11 V
10 V
9 V
13.5 V
15 V
Tj=150 °C
< IGBT MODULES >
CM150TX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : September 2012
7
PERFORMANCE CURVES
INVERTER PART
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=0 , INDUCTIVE LOAD
---------------: T j=150 °C, - - - - -: Tj=125 °C
VCC=600 V, VGE=±15 V, IC=150 A, INDUCTIVE LOAD
---------------: T j=150 °C, - - - - -: Tj=125 °C
SWITCHING TIME (ns)
10
100
1000
10 100 1000
SWITCHING TIME (ns)
10
100
1000
1 10 100
COLLECTOR CURRENT IC (A) EXTERNAL GATE RESISTANCE RG ()
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=0 ,
INDUCTIVE LOAD, PER PULSE
---------------: T j=150 °C, - - - - -: Tj=125 °C
VCC=600 V, VGE=±15 V, IC/IE=150 A,
INDUCTIVE LOAD, PER PULSE
---------------: T j=150 °C, - - - - -: Tj=125 °C
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
1
10
100
10 100 1000
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
1
10
100
0.1 1 10 100
COLLECTOR CURRENT IC (A)
EMITTER CURRENT IE (A)
EXTERNAL GATE RESISTANCE RG ()
Eon
Eoff
Err
tr
tf
td(off)
td(on)
td(on)
tr
tf
td(off)
Eon
Eoff
Err
< IGBT MODULES >
CM150TX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : September 2012
8
PERFORMANCE CURVES
INVERTER PART
CAPACITANCE CHARACTERISTICS
(TYPICAL)
FREE WHEELING DIODE
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
G-E short-circuited, Tj=25 °C
VCC=600 V, VGE=±15 V, RG=0 , INDUCTIVE LOAD
---------------: T j=150 °C, - - - - -: Tj=125 °C
CAPACITANCE (nF)
0.01
0.1
1
10
100
0.1 1 10 100
trr (ns), Irr (A)
10
100
1000
10 100 1000
COLLECTOR-EMITTER VOLTAGE VCE (V) EMITTER CURRENT IE (A)
GATE CHARGE CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
(MAXIMUM)
VCC=600 V, IC=150 A, Tj=25 °C
Single pulse, TC=25 °C
Rth(j-c)Q=0.13 K/W, Rth(j-c)D=0.23 K/W
GATE-EMITTER VOLTAGE VGE (V)
0
5
10
15
20
0 100 200 300 400 500
NORMALIZED TRANSIENT THERMAL RESISTANCE
Zth(j-c)
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1 10
GATE CHARGE QG (nC) TIME (S)
trr
Irr
Cies
Coes
Cres
< IGBT MODULES >
CM150TX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : September 2012
9
PERFORMANCE CURVES
NTC thermistor part
TEMPERATURE CHARACTERISTICS
(TYPICAL)
RESISTANCE R (k)
0.1
1
10
100
-50 -25 0 25 50 75 100 125
TEMPERATURE T (°C)
< IGBT MODULES >
CM150TX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Publication Date : September 2012
10
Keep safety first in your circuit designs!
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more
reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors
may lead to personal injury, fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary
circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
•These materials are intended as a reference to assist our customers in the selection of the Mitsubishi
semiconductor product best suited to the customer's application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
•Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.
•All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are subject
to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It
is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product
listed herein.
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi
Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these
inaccuracies or errors.
Please also pay attention to information published by Mitsubishi Electric Corporation by various means,
including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/).
•When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before making
a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes
no responsibility for any damage, liability or other loss resulting from the information containedherein.
•Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or systems
for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
•The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or
in part these materials.
•If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other than
the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of
destination is prohibited.
•Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor
for further details on these materials or the products contained therein.
© 2012 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED.